ossu dc431ce07e NetEq: Changed Packet::payload to be an rtc::Buffer
That is, rather than keeping a separate pointer and size.
This helps automate memory management in NetEq and will be useful in the
work to minimize the AudioDecoder interface as part of the injectable
audio codec work.

I'm planning a follow-up that will change the current management of Packet* to wrapping them in unique_ptr instead.

Review-Url: https://codereview.webrtc.org/2289093003
Cr-Commit-Position: refs/heads/master@{#14002}
2016-08-31 15:51:18 +00:00

298 lines
9.1 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This is the implementation of the PacketBuffer class. It is mostly based on
// an STL list. The list is kept sorted at all times so that the next packet to
// decode is at the beginning of the list.
#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
#include <algorithm> // find_if()
#include "webrtc/base/logging.h"
#include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
#include "webrtc/modules/audio_coding/neteq/decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/tick_timer.h"
namespace webrtc {
// Predicate used when inserting packets in the buffer list.
// Operator() returns true when |packet| goes before |new_packet|.
class NewTimestampIsLarger {
public:
explicit NewTimestampIsLarger(const Packet* new_packet)
: new_packet_(new_packet) {
}
bool operator()(Packet* packet) {
return (*new_packet_ >= *packet);
}
private:
const Packet* new_packet_;
};
PacketBuffer::PacketBuffer(size_t max_number_of_packets,
const TickTimer* tick_timer)
: max_number_of_packets_(max_number_of_packets), tick_timer_(tick_timer) {}
// Destructor. All packets in the buffer will be destroyed.
PacketBuffer::~PacketBuffer() {
Flush();
}
// Flush the buffer. All packets in the buffer will be destroyed.
void PacketBuffer::Flush() {
DeleteAllPackets(&buffer_);
}
bool PacketBuffer::Empty() const {
return buffer_.empty();
}
int PacketBuffer::InsertPacket(Packet* packet) {
if (!packet || packet->payload.empty()) {
if (packet) {
delete packet;
}
LOG(LS_WARNING) << "InsertPacket invalid packet";
return kInvalidPacket;
}
int return_val = kOK;
packet->waiting_time = tick_timer_->GetNewStopwatch();
if (buffer_.size() >= max_number_of_packets_) {
// Buffer is full. Flush it.
Flush();
LOG(LS_WARNING) << "Packet buffer flushed";
return_val = kFlushed;
}
// Get an iterator pointing to the place in the buffer where the new packet
// should be inserted. The list is searched from the back, since the most
// likely case is that the new packet should be near the end of the list.
PacketList::reverse_iterator rit = std::find_if(
buffer_.rbegin(), buffer_.rend(),
NewTimestampIsLarger(packet));
// The new packet is to be inserted to the right of |rit|. If it has the same
// timestamp as |rit|, which has a higher priority, do not insert the new
// packet to list.
if (rit != buffer_.rend() &&
packet->header.timestamp == (*rit)->header.timestamp) {
delete packet;
return return_val;
}
// The new packet is to be inserted to the left of |it|. If it has the same
// timestamp as |it|, which has a lower priority, replace |it| with the new
// packet.
PacketList::iterator it = rit.base();
if (it != buffer_.end() &&
packet->header.timestamp == (*it)->header.timestamp) {
delete *it;
it = buffer_.erase(it);
}
buffer_.insert(it, packet); // Insert the packet at that position.
return return_val;
}
int PacketBuffer::InsertPacketList(
PacketList* packet_list,
const DecoderDatabase& decoder_database,
rtc::Optional<uint8_t>* current_rtp_payload_type,
rtc::Optional<uint8_t>* current_cng_rtp_payload_type) {
bool flushed = false;
while (!packet_list->empty()) {
Packet* packet = packet_list->front();
if (decoder_database.IsComfortNoise(packet->header.payloadType)) {
if (*current_cng_rtp_payload_type &&
**current_cng_rtp_payload_type != packet->header.payloadType) {
// New CNG payload type implies new codec type.
*current_rtp_payload_type = rtc::Optional<uint8_t>();
Flush();
flushed = true;
}
*current_cng_rtp_payload_type =
rtc::Optional<uint8_t>(packet->header.payloadType);
} else if (!decoder_database.IsDtmf(packet->header.payloadType)) {
// This must be speech.
if (*current_rtp_payload_type &&
**current_rtp_payload_type != packet->header.payloadType) {
*current_cng_rtp_payload_type = rtc::Optional<uint8_t>();
Flush();
flushed = true;
}
*current_rtp_payload_type =
rtc::Optional<uint8_t>(packet->header.payloadType);
}
int return_val = InsertPacket(packet);
packet_list->pop_front();
if (return_val == kFlushed) {
// The buffer flushed, but this is not an error. We can still continue.
flushed = true;
} else if (return_val != kOK) {
// An error occurred. Delete remaining packets in list and return.
DeleteAllPackets(packet_list);
return return_val;
}
}
return flushed ? kFlushed : kOK;
}
int PacketBuffer::NextTimestamp(uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
*next_timestamp = buffer_.front()->header.timestamp;
return kOK;
}
int PacketBuffer::NextHigherTimestamp(uint32_t timestamp,
uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
PacketList::const_iterator it;
for (it = buffer_.begin(); it != buffer_.end(); ++it) {
if ((*it)->header.timestamp >= timestamp) {
// Found a packet matching the search.
*next_timestamp = (*it)->header.timestamp;
return kOK;
}
}
return kNotFound;
}
const RTPHeader* PacketBuffer::NextRtpHeader() const {
if (Empty()) {
return NULL;
}
return const_cast<const RTPHeader*>(&(buffer_.front()->header));
}
Packet* PacketBuffer::GetNextPacket(size_t* discard_count) {
if (Empty()) {
// Buffer is empty.
return NULL;
}
Packet* packet = buffer_.front();
// Assert that the packet sanity checks in InsertPacket method works.
assert(packet && !packet->payload.empty());
buffer_.pop_front();
// Discard other packets with the same timestamp. These are duplicates or
// redundant payloads that should not be used.
size_t discards = 0;
while (!Empty() &&
buffer_.front()->header.timestamp == packet->header.timestamp) {
if (DiscardNextPacket() != kOK) {
assert(false); // Must be ok by design.
}
++discards;
}
// The way of inserting packet should not cause any packet discarding here.
// TODO(minyue): remove |discard_count|.
assert(discards == 0);
if (discard_count)
*discard_count = discards;
return packet;
}
int PacketBuffer::DiscardNextPacket() {
if (Empty()) {
return kBufferEmpty;
}
// Assert that the packet sanity checks in InsertPacket method works.
assert(buffer_.front());
assert(!buffer_.front()->payload.empty());
DeleteFirstPacket(&buffer_);
return kOK;
}
int PacketBuffer::DiscardOldPackets(uint32_t timestamp_limit,
uint32_t horizon_samples) {
while (!Empty() && timestamp_limit != buffer_.front()->header.timestamp &&
IsObsoleteTimestamp(buffer_.front()->header.timestamp,
timestamp_limit,
horizon_samples)) {
if (DiscardNextPacket() != kOK) {
assert(false); // Must be ok by design.
}
}
return 0;
}
int PacketBuffer::DiscardAllOldPackets(uint32_t timestamp_limit) {
return DiscardOldPackets(timestamp_limit, 0);
}
size_t PacketBuffer::NumPacketsInBuffer() const {
return buffer_.size();
}
size_t PacketBuffer::NumSamplesInBuffer(DecoderDatabase* decoder_database,
size_t last_decoded_length) const {
PacketList::const_iterator it;
size_t num_samples = 0;
size_t last_duration = last_decoded_length;
for (it = buffer_.begin(); it != buffer_.end(); ++it) {
Packet* packet = (*it);
AudioDecoder* decoder =
decoder_database->GetDecoder(packet->header.payloadType);
if (decoder && !packet->sync_packet) {
if (!packet->primary) {
continue;
}
int duration = decoder->PacketDuration(packet->payload.data(),
packet->payload.size());
if (duration >= 0) {
last_duration = duration; // Save the most up-to-date (valid) duration.
}
}
num_samples += last_duration;
}
return num_samples;
}
bool PacketBuffer::DeleteFirstPacket(PacketList* packet_list) {
if (packet_list->empty()) {
return false;
}
Packet* first_packet = packet_list->front();
delete first_packet;
packet_list->pop_front();
return true;
}
void PacketBuffer::DeleteAllPackets(PacketList* packet_list) {
while (DeleteFirstPacket(packet_list)) {
// Continue while the list is not empty.
}
}
void PacketBuffer::BufferStat(int* num_packets, int* max_num_packets) const {
*num_packets = static_cast<int>(buffer_.size());
*max_num_packets = static_cast<int>(max_number_of_packets_);
}
} // namespace webrtc