Parse the estimation parameters from the field trial string. BUG=webrtc:6690 Review-Url: https://codereview.webrtc.org/2489323002 Cr-Commit-Position: refs/heads/master@{#15126}
115 lines
4.1 KiB
C++
115 lines
4.1 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/test/gtest.h"
|
|
#include "webrtc/base/random.h"
|
|
#include "webrtc/modules/congestion_controller/trendline_estimator.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
constexpr size_t kWindowSize = 15;
|
|
constexpr double kSmoothing = 0.0;
|
|
constexpr double kGain = 1;
|
|
constexpr int64_t kAvgTimeBetweenPackets = 10;
|
|
} // namespace
|
|
|
|
TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
|
|
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
|
Random rand(0x1234567);
|
|
double now_ms = rand.Rand<double>() * 10000;
|
|
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
double recv_delta = 2 * send_delta;
|
|
now_ms += recv_delta;
|
|
estimator.Update(recv_delta, send_delta, now_ms);
|
|
if (i < kWindowSize)
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
else
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
|
|
}
|
|
}
|
|
|
|
TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) {
|
|
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
|
Random rand(0x1234567);
|
|
double now_ms = rand.Rand<double>() * 10000;
|
|
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
double recv_delta = 0.5 * send_delta;
|
|
now_ms += recv_delta;
|
|
estimator.Update(recv_delta, send_delta, now_ms);
|
|
if (i < kWindowSize)
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
else
|
|
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
|
|
}
|
|
}
|
|
|
|
TEST(TrendlineEstimator, PerfectLineSlopeZero) {
|
|
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
|
Random rand(0x1234567);
|
|
double now_ms = rand.Rand<double>() * 10000;
|
|
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
double recv_delta = send_delta;
|
|
now_ms += recv_delta;
|
|
estimator.Update(recv_delta, send_delta, now_ms);
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
}
|
|
}
|
|
|
|
TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) {
|
|
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
|
Random rand(0x1234567);
|
|
double now_ms = rand.Rand<double>() * 10000;
|
|
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
|
|
now_ms += recv_delta;
|
|
estimator.Update(recv_delta, send_delta, now_ms);
|
|
if (i < kWindowSize)
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
else
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
|
|
}
|
|
}
|
|
|
|
TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) {
|
|
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
|
Random rand(0x1234567);
|
|
double now_ms = rand.Rand<double>() * 10000;
|
|
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25);
|
|
now_ms += recv_delta;
|
|
estimator.Update(recv_delta, send_delta, now_ms);
|
|
if (i < kWindowSize)
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
else
|
|
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
|
|
}
|
|
}
|
|
|
|
TEST(TrendlineEstimator, JitteryLineSlopeZero) {
|
|
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
|
Random rand(0x1234567);
|
|
double now_ms = rand.Rand<double>() * 10000;
|
|
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8);
|
|
now_ms += recv_delta;
|
|
estimator.Update(recv_delta, send_delta, now_ms);
|
|
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|