Add a new overuse estimator for the delay based BWE behind experiment.

Parse the estimation parameters from the field trial string.

BUG=webrtc:6690

Review-Url: https://codereview.webrtc.org/2489323002
Cr-Commit-Position: refs/heads/master@{#15126}
This commit is contained in:
terelius 2016-11-17 03:48:18 -08:00 committed by Commit bot
parent b7e7b49551
commit afaef8bbeb
10 changed files with 404 additions and 10 deletions

View File

@ -399,6 +399,7 @@ if (rtc_include_tests) {
"congestion_controller/probe_controller_unittest.cc",
"congestion_controller/probing_interval_estimator_unittest.cc",
"congestion_controller/transport_feedback_adapter_unittest.cc",
"congestion_controller/trendline_estimator_unittest.cc",
"media_file/media_file_unittest.cc",
"module_common_types_unittest.cc",
"pacing/alr_detector_unittest.cc",

View File

@ -22,8 +22,16 @@ rtc_static_library("congestion_controller") {
"probing_interval_estimator.h",
"transport_feedback_adapter.cc",
"transport_feedback_adapter.h",
"trendline_estimator.cc",
"trendline_estimator.h",
]
if (rtc_enable_bwe_test_logging) {
defines = [ "BWE_TEST_LOGGING_COMPILE_TIME_ENABLE=1" ]
} else {
defines = [ "BWE_TEST_LOGGING_COMPILE_TIME_ENABLE=0" ]
}
# TODO(jschuh): Bug 1348: fix this warning.
configs += [ "//build/config/compiler:no_size_t_to_int_warning" ]

View File

@ -12,6 +12,7 @@
#include <algorithm>
#include <cmath>
#include <string>
#include "webrtc/base/checks.h"
#include "webrtc/base/constructormagic.h"
@ -38,15 +39,52 @@ constexpr uint32_t kFixedSsrc = 0;
constexpr int kInitialRateWindowMs = 500;
constexpr int kRateWindowMs = 150;
constexpr size_t kDefaultTrendlineWindowSize = 15;
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
constexpr double kDefaultTrendlineThresholdGain = 4.0;
const char kBitrateEstimateExperiment[] = "WebRTC-ImprovedBitrateEstimate";
const char kBweTrendlineFilterExperiment[] = "WebRTC-BweTrendlineFilter";
bool BitrateEstimateExperimentIsEnabled() {
return webrtc::field_trial::FindFullName(kBitrateEstimateExperiment) ==
"Enabled";
}
bool TrendlineFilterExperimentIsEnabled() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
// The experiment is enabled iff the field trial string begins with "Enabled".
return experiment_string.find("Enabled") == 0;
}
bool ReadTrendlineFilterExperimentParameters(size_t* window_points,
double* smoothing_coef,
double* threshold_gain) {
RTC_DCHECK(TrendlineFilterExperimentIsEnabled());
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu,%lf,%lf",
window_points, smoothing_coef, threshold_gain);
if (parsed_values == 3) {
RTC_CHECK_GT(*window_points, 1) << "Need at least 2 points to fit a line.";
RTC_CHECK(0 <= *smoothing_coef && *smoothing_coef <= 1)
<< "Coefficient needs to be between 0 and 1 for weighted average.";
RTC_CHECK_GT(*threshold_gain, 0) << "Threshold gain needs to be positive.";
return true;
}
LOG(LS_WARNING) << "Failed to parse parameters for BweTrendlineFilter "
"experiment from field trial string. Using default.";
*window_points = kDefaultTrendlineWindowSize;
*smoothing_coef = kDefaultTrendlineSmoothingCoeff;
*threshold_gain = kDefaultTrendlineThresholdGain;
return false;
}
} // namespace
namespace webrtc {
DelayBasedBwe::BitrateEstimator::BitrateEstimator()
: sum_(0),
current_win_ms_(0),
@ -132,12 +170,22 @@ rtc::Optional<uint32_t> DelayBasedBwe::BitrateEstimator::bitrate_bps() const {
DelayBasedBwe::DelayBasedBwe(Clock* clock)
: clock_(clock),
inter_arrival_(),
estimator_(),
kalman_estimator_(),
trendline_estimator_(),
detector_(OverUseDetectorOptions()),
receiver_incoming_bitrate_(),
last_update_ms_(-1),
last_seen_packet_ms_(-1),
uma_recorded_(false) {
uma_recorded_(false),
trendline_window_size_(kDefaultTrendlineWindowSize),
trendline_smoothing_coeff_(kDefaultTrendlineSmoothingCoeff),
trendline_threshold_gain_(kDefaultTrendlineThresholdGain),
in_trendline_experiment_(TrendlineFilterExperimentIsEnabled()) {
if (in_trendline_experiment_) {
ReadTrendlineFilterExperimentParameters(&trendline_window_size_,
&trendline_smoothing_coeff_,
&trendline_threshold_gain_);
}
network_thread_.DetachFromThread();
}
@ -171,7 +219,10 @@ DelayBasedBwe::Result DelayBasedBwe::IncomingPacketInfo(
inter_arrival_.reset(
new InterArrival((kTimestampGroupLengthMs << kInterArrivalShift) / 1000,
kTimestampToMs, true));
estimator_.reset(new OveruseEstimator(OverUseDetectorOptions()));
kalman_estimator_.reset(new OveruseEstimator(OverUseDetectorOptions()));
trendline_estimator_.reset(new TrendlineEstimator(
trendline_window_size_, trendline_smoothing_coeff_,
trendline_threshold_gain_));
}
last_seen_packet_ms_ = now_ms;
@ -192,10 +243,19 @@ DelayBasedBwe::Result DelayBasedBwe::IncomingPacketInfo(
info.payload_size, &ts_delta, &t_delta,
&size_delta)) {
double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
estimator_->Update(t_delta, ts_delta_ms, size_delta, detector_.State(),
if (in_trendline_experiment_) {
trendline_estimator_->Update(t_delta, ts_delta_ms, info.arrival_time_ms);
detector_.Detect(trendline_estimator_->trendline_slope(), ts_delta_ms,
trendline_estimator_->num_of_deltas(),
info.arrival_time_ms);
detector_.Detect(estimator_->offset(), ts_delta_ms,
estimator_->num_of_deltas(), info.arrival_time_ms);
} else {
kalman_estimator_->Update(t_delta, ts_delta_ms, size_delta,
detector_.State(), info.arrival_time_ms);
detector_.Detect(kalman_estimator_->offset(), ts_delta_ms,
kalman_estimator_->num_of_deltas(),
info.arrival_time_ms);
}
}
int probing_bps = 0;
@ -237,8 +297,9 @@ bool DelayBasedBwe::UpdateEstimate(int64_t arrival_time_ms,
int64_t now_ms,
rtc::Optional<uint32_t> acked_bitrate_bps,
uint32_t* target_bitrate_bps) {
const RateControlInput input(detector_.State(), acked_bitrate_bps,
estimator_->var_noise());
// TODO(terelius): RateControlInput::noise_var is deprecated and will be
// removed. In the meantime, we set it to zero.
const RateControlInput input(detector_.State(), acked_bitrate_bps, 0);
rate_control_.Update(&input, now_ms);
*target_bitrate_bps = rate_control_.UpdateBandwidthEstimate(now_ms);
return rate_control_.ValidEstimate();

View File

@ -20,6 +20,7 @@
#include "webrtc/base/rate_statistics.h"
#include "webrtc/base/thread_checker.h"
#include "webrtc/modules/congestion_controller/probe_bitrate_estimator.h"
#include "webrtc/modules/congestion_controller/trendline_estimator.h"
#include "webrtc/modules/remote_bitrate_estimator/aimd_rate_control.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/modules/remote_bitrate_estimator/inter_arrival.h"
@ -85,7 +86,8 @@ class DelayBasedBwe {
rtc::ThreadChecker network_thread_;
Clock* const clock_;
std::unique_ptr<InterArrival> inter_arrival_;
std::unique_ptr<OveruseEstimator> estimator_;
std::unique_ptr<OveruseEstimator> kalman_estimator_;
std::unique_ptr<TrendlineEstimator> trendline_estimator_;
OveruseDetector detector_;
BitrateEstimator receiver_incoming_bitrate_;
int64_t last_update_ms_;
@ -93,6 +95,10 @@ class DelayBasedBwe {
bool uma_recorded_;
AimdRateControl rate_control_;
ProbeBitrateEstimator probe_bitrate_estimator_;
size_t trendline_window_size_;
double trendline_smoothing_coeff_;
double trendline_threshold_gain_;
const bool in_trendline_experiment_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(DelayBasedBwe);
};

View File

@ -195,4 +195,38 @@ TEST_F(DelayBasedBweExperimentTest, CapacityDropNegOffsetChange) {
TEST_F(DelayBasedBweExperimentTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 333, 0);
}
class DelayBasedBweTrendlineExperimentTest : public DelayBasedBweTest {
public:
DelayBasedBweTrendlineExperimentTest()
: override_field_trials_("WebRTC-BweTrendlineFilter/Enabled-15,0.9,4/") {}
protected:
void SetUp() override {
bitrate_estimator_.reset(new DelayBasedBwe(&clock_));
}
test::ScopedFieldTrials override_field_trials_;
};
TEST_F(DelayBasedBweTrendlineExperimentTest, RateIncreaseRtpTimestamps) {
RateIncreaseRtpTimestampsTestHelper(1240);
}
TEST_F(DelayBasedBweTrendlineExperimentTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 600, 0);
}
TEST_F(DelayBasedBweTrendlineExperimentTest, CapacityDropPosOffsetChange) {
CapacityDropTestHelper(1, false, 600, 30000);
}
TEST_F(DelayBasedBweTrendlineExperimentTest, CapacityDropNegOffsetChange) {
CapacityDropTestHelper(1, false, 1267, -30000);
}
TEST_F(DelayBasedBweTrendlineExperimentTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 600, 0);
}
} // namespace webrtc

View File

@ -0,0 +1,87 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/congestion_controller/trendline_estimator.h"
#include <algorithm>
#include "webrtc/base/checks.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
namespace webrtc {
namespace {
double LinearFitSlope(const std::list<std::pair<double, double>> points) {
RTC_DCHECK(points.size() >= 2);
// Compute the "center of mass".
double sum_x = 0;
double sum_y = 0;
for (const auto& point : points) {
sum_x += point.first;
sum_y += point.second;
}
double x_avg = sum_x / points.size();
double y_avg = sum_y / points.size();
// Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
double numerator = 0;
double denominator = 0;
for (const auto& point : points) {
numerator += (point.first - x_avg) * (point.second - y_avg);
denominator += (point.first - x_avg) * (point.first - x_avg);
}
return numerator / denominator;
}
} // namespace
enum { kDeltaCounterMax = 1000 };
TrendlineEstimator::TrendlineEstimator(size_t window_size,
double smoothing_coef,
double threshold_gain)
: window_size_(window_size),
smoothing_coef_(smoothing_coef),
threshold_gain_(threshold_gain),
num_of_deltas_(0),
accumulated_delay_(0),
smoothed_delay_(0),
delay_hist_(),
trendline_(0) {}
TrendlineEstimator::~TrendlineEstimator() {}
void TrendlineEstimator::Update(double recv_delta_ms,
double send_delta_ms,
double now_ms) {
const double delta_ms = recv_delta_ms - send_delta_ms;
++num_of_deltas_;
if (num_of_deltas_ > kDeltaCounterMax) {
num_of_deltas_ = kDeltaCounterMax;
}
// Exponential backoff filter.
accumulated_delay_ += delta_ms;
BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_);
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
(1 - smoothing_coef_) * accumulated_delay_;
BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_);
// Simple linear regression.
delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_));
if (delay_hist_.size() > window_size_) {
delay_hist_.pop_front();
}
if (delay_hist_.size() == window_size_) {
trendline_ = LinearFitSlope(delay_hist_);
}
BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_);
}
} // namespace webrtc

View File

@ -0,0 +1,65 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_CONGESTION_CONTROLLER_TRENDLINE_ESTIMATOR_H_
#define WEBRTC_MODULES_CONGESTION_CONTROLLER_TRENDLINE_ESTIMATOR_H_
#include <list>
#include <utility>
#include "webrtc/base/constructormagic.h"
#include "webrtc/common_types.h"
namespace webrtc {
class TrendlineEstimator {
public:
// |window_size| is the number of points required to compute a trend line.
// |smoothing_coef| controls how much we smooth out the delay before fitting
// the trend line. |threshold_gain| is used to scale the trendline slope for
// comparison to the old threshold. Once the old estimator has been removed
// (or the thresholds been merged into the estimators), we can just set the
// threshold instead of setting a gain.
TrendlineEstimator(size_t window_size,
double smoothing_coef,
double threshold_gain);
~TrendlineEstimator();
// Update the estimator with a new sample. The deltas should represent deltas
// between timestamp groups as defined by the InterArrival class.
void Update(double recv_delta_ms, double send_delta_ms, double now_ms);
// Returns the estimated trend k multiplied by some gain.
// 0 < k < 1 -> the delay increases, queues are filling up
// k == 0 -> the delay does not change
// k < 0 -> the delay decreases, queues are being emptied
double trendline_slope() const { return trendline_ * threshold_gain_; }
// Returns the number of deltas which the current estimator state is based on.
unsigned int num_of_deltas() const { return num_of_deltas_; }
private:
// Parameters.
const size_t window_size_;
const double smoothing_coef_;
const double threshold_gain_;
// Used by the existing threshold.
unsigned int num_of_deltas_;
// Exponential backoff filtering.
double accumulated_delay_;
double smoothed_delay_;
// Linear least squares regression.
std::list<std::pair<double, double>> delay_hist_;
double trendline_;
RTC_DISALLOW_COPY_AND_ASSIGN(TrendlineEstimator);
};
} // namespace webrtc
#endif // WEBRTC_MODULES_CONGESTION_CONTROLLER_TRENDLINE_ESTIMATOR_H_

View File

@ -0,0 +1,114 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/test/gtest.h"
#include "webrtc/base/random.h"
#include "webrtc/modules/congestion_controller/trendline_estimator.h"
namespace webrtc {
namespace {
constexpr size_t kWindowSize = 15;
constexpr double kSmoothing = 0.0;
constexpr double kGain = 1;
constexpr int64_t kAvgTimeBetweenPackets = 10;
} // namespace
TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 2 * send_delta;
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
}
}
TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 0.5 * send_delta;
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
}
}
TEST(TrendlineEstimator, PerfectLineSlopeZero) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = send_delta;
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
}
}
TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
}
}
TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25);
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
}
}
TEST(TrendlineEstimator, JitteryLineSlopeZero) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8);
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
}
}
} // namespace webrtc

View File

@ -242,6 +242,19 @@ TEST_P(BweSimulation, PacerGoogleWifiTrace3Mbps) {
RunFor(300 * 1000);
}
TEST_P(BweSimulation, PacerGoogleWifiTrace3MbpsLowFramerate) {
PeriodicKeyFrameSource source(0, 5, 300, 0, 0, 1000);
PacedVideoSender sender(&uplink_, &source, GetParam());
RateCounterFilter counter1(&uplink_, 0, "sender_output",
bwe_names[GetParam()]);
TraceBasedDeliveryFilter filter(&uplink_, 0, "link_capacity");
filter.set_max_delay_ms(500);
RateCounterFilter counter2(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
ASSERT_TRUE(filter.Init(test::ResourcePath("google-wifi-3mbps", "rx")));
RunFor(300 * 1000);
}
TEST_P(BweSimulation, SelfFairnessTest) {
Random prng(Clock::GetRealTimeClock()->TimeInMicroseconds());
const int kAllFlowIds[] = {0, 1, 2, 3};

View File

@ -140,8 +140,13 @@ def main():
detector_state.addSubplot(['offset_ms'], "Time (s)", "Offset")
detector_state.addSubplot(['gamma_ms'], "Time (s)", "Gamma")
trendline_state = Figure("TrendlineState")
trendline_state.addSubplot(["accumulated_delay_ms", "smoothed_delay_ms"],
"Time (s)", "Delay (ms)")
trendline_state.addSubplot(["trendline_slope"], "Time (s)", "Slope")
# Select which figures to plot here.
figures = [receiver, detector_state]
figures = [receiver, detector_state, trendline_state]
# Add samples to the figures.
for line in sys.stdin: