webrtc_m130/net/dcsctp/socket/transmission_control_block.cc
Victor Boivie b206ab1f81 dcsctp: Restart heartbeat timer when sending DATA
Before this change, the heartbeat timer was restarted every time a
packet was sent on the socket. On an idle connection, if the peer is
sending heartbeats, just responding to those heartbeats (with a
HEARTBEAT-ACK) would restart the timer, and then this socket wouldn't
do any heartbeating itself because the next hearbeat by the peer would
be received before the timer expires.

This is not according to the specification, where
https://datatracker.ietf.org/doc/html/rfc9260#section-8.3 states that
"A destination transport address is considered "idle" if no new chunk
 that can be used for updating path RTT (usually including first
 transmission DATA, INIT, COOKIE ECHO, or HEARTBEAT chunks, etc.)"

There are already timers running when INIT, and COOKIE-ECHO are sent
and not acked, so the heartbeat shouldn't be sent then. This is further
confirmed in the same section in the RFC which says that "The sending of
HEARTBEAT chunks MAY begin upon reaching the ESTABLISHED state". And
when INIT and COOKIE-ECHO are sent, the connection is not yet
established.

This CL changes so that the heartbeat timer is only restarted when any
DATA or I-DATA chunk is sent. This will make both sides send heartbeats
on an idle connection.

Bug: webrtc:343600379
Change-Id: I5ab159b7901e2ec9d37b24aaf845891b60a53c13
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/352841
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42409}
2024-05-30 10:50:30 +00:00

345 lines
13 KiB
C++

/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "net/dcsctp/socket/transmission_control_block.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/types/optional.h"
#include "api/units/time_delta.h"
#include "net/dcsctp/packet/chunk/data_chunk.h"
#include "net/dcsctp/packet/chunk/forward_tsn_chunk.h"
#include "net/dcsctp/packet/chunk/idata_chunk.h"
#include "net/dcsctp/packet/chunk/iforward_tsn_chunk.h"
#include "net/dcsctp/packet/chunk/reconfig_chunk.h"
#include "net/dcsctp/packet/chunk/sack_chunk.h"
#include "net/dcsctp/packet/sctp_packet.h"
#include "net/dcsctp/public/dcsctp_options.h"
#include "net/dcsctp/public/types.h"
#include "net/dcsctp/rx/data_tracker.h"
#include "net/dcsctp/rx/reassembly_queue.h"
#include "net/dcsctp/socket/capabilities.h"
#include "net/dcsctp/socket/stream_reset_handler.h"
#include "net/dcsctp/timer/timer.h"
#include "net/dcsctp/tx/retransmission_queue.h"
#include "net/dcsctp/tx/retransmission_timeout.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/string_builder.h"
namespace dcsctp {
using ::webrtc::TimeDelta;
using ::webrtc::Timestamp;
TransmissionControlBlock::TransmissionControlBlock(
TimerManager& timer_manager,
absl::string_view log_prefix,
const DcSctpOptions& options,
const Capabilities& capabilities,
DcSctpSocketCallbacks& callbacks,
SendQueue& send_queue,
VerificationTag my_verification_tag,
TSN my_initial_tsn,
VerificationTag peer_verification_tag,
TSN peer_initial_tsn,
size_t a_rwnd,
TieTag tie_tag,
PacketSender& packet_sender,
std::function<bool()> is_connection_established)
: log_prefix_(log_prefix),
options_(options),
timer_manager_(timer_manager),
capabilities_(capabilities),
callbacks_(callbacks),
t3_rtx_(timer_manager_.CreateTimer(
"t3-rtx",
absl::bind_front(&TransmissionControlBlock::OnRtxTimerExpiry, this),
TimerOptions(options.rto_initial.ToTimeDelta(),
TimerBackoffAlgorithm::kExponential,
/*max_restarts=*/absl::nullopt,
options.max_timer_backoff_duration.has_value()
? options.max_timer_backoff_duration->ToTimeDelta()
: TimeDelta::PlusInfinity()))),
delayed_ack_timer_(timer_manager_.CreateTimer(
"delayed-ack",
absl::bind_front(&TransmissionControlBlock::OnDelayedAckTimerExpiry,
this),
TimerOptions(options.delayed_ack_max_timeout.ToTimeDelta(),
TimerBackoffAlgorithm::kExponential,
/*max_restarts=*/0,
/*max_backoff_duration=*/TimeDelta::PlusInfinity(),
webrtc::TaskQueueBase::DelayPrecision::kHigh))),
my_verification_tag_(my_verification_tag),
my_initial_tsn_(my_initial_tsn),
peer_verification_tag_(peer_verification_tag),
peer_initial_tsn_(peer_initial_tsn),
tie_tag_(tie_tag),
is_connection_established_(std::move(is_connection_established)),
packet_sender_(packet_sender),
rto_(options),
tx_error_counter_(log_prefix, options),
data_tracker_(log_prefix, delayed_ack_timer_.get(), peer_initial_tsn),
reassembly_queue_(log_prefix,
options.max_receiver_window_buffer_size,
capabilities.message_interleaving),
retransmission_queue_(
log_prefix,
&callbacks_,
my_initial_tsn,
a_rwnd,
send_queue,
absl::bind_front(&TransmissionControlBlock::ObserveRTT, this),
[this]() { tx_error_counter_.Clear(); },
*t3_rtx_,
options,
capabilities.partial_reliability,
capabilities.message_interleaving),
stream_reset_handler_(log_prefix,
this,
&timer_manager,
&data_tracker_,
&reassembly_queue_,
&retransmission_queue_),
heartbeat_handler_(log_prefix, options, this, &timer_manager_) {
send_queue.EnableMessageInterleaving(capabilities.message_interleaving);
}
void TransmissionControlBlock::ObserveRTT(TimeDelta rtt) {
TimeDelta prev_rto = rto_.rto();
rto_.ObserveRTT(rtt);
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "new rtt=" << webrtc::ToString(rtt)
<< ", srtt=" << webrtc::ToString(rto_.srtt())
<< ", rto=" << webrtc::ToString(rto_.rto()) << " ("
<< webrtc::ToString(prev_rto) << ")";
t3_rtx_->set_duration(rto_.rto());
TimeDelta delayed_ack_tmo = std::min(
rto_.rto() * 0.5, options_.delayed_ack_max_timeout.ToTimeDelta());
delayed_ack_timer_->set_duration(delayed_ack_tmo);
}
TimeDelta TransmissionControlBlock::OnRtxTimerExpiry() {
Timestamp now = callbacks_.Now();
RTC_DLOG(LS_INFO) << log_prefix_ << "Timer " << t3_rtx_->name()
<< " has expired";
if (cookie_echo_chunk_.has_value()) {
// In the COOKIE_ECHO state, let the T1-COOKIE timer trigger
// retransmissions, to avoid having two timers doing that.
RTC_DLOG(LS_VERBOSE) << "Not retransmitting as T1-cookie is active.";
} else {
if (IncrementTxErrorCounter("t3-rtx expired")) {
retransmission_queue_.HandleT3RtxTimerExpiry();
SendBufferedPackets(now);
}
}
return TimeDelta::Zero();
}
TimeDelta TransmissionControlBlock::OnDelayedAckTimerExpiry() {
data_tracker_.HandleDelayedAckTimerExpiry();
MaybeSendSack();
return TimeDelta::Zero();
}
void TransmissionControlBlock::MaybeSendSack() {
if (data_tracker_.ShouldSendAck(/*also_if_delayed=*/false)) {
SctpPacket::Builder builder = PacketBuilder();
builder.Add(
data_tracker_.CreateSelectiveAck(reassembly_queue_.remaining_bytes()));
Send(builder);
}
}
void TransmissionControlBlock::MaybeSendForwardTsn(SctpPacket::Builder& builder,
Timestamp now) {
if (now >= limit_forward_tsn_until_ &&
retransmission_queue_.ShouldSendForwardTsn(now)) {
if (capabilities_.message_interleaving) {
builder.Add(retransmission_queue_.CreateIForwardTsn());
} else {
builder.Add(retransmission_queue_.CreateForwardTsn());
}
Send(builder);
// https://datatracker.ietf.org/doc/html/rfc3758
// "IMPLEMENTATION NOTE: An implementation may wish to limit the number of
// duplicate FORWARD TSN chunks it sends by ... waiting a full RTT before
// sending a duplicate FORWARD TSN."
// "Any delay applied to the sending of FORWARD TSN chunk SHOULD NOT exceed
// 200ms and MUST NOT exceed 500ms".
limit_forward_tsn_until_ =
now + std::min(TimeDelta::Millis(200), rto_.srtt());
}
}
void TransmissionControlBlock::MaybeSendFastRetransmit() {
if (!retransmission_queue_.has_data_to_be_fast_retransmitted()) {
return;
}
// https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.4
// "Determine how many of the earliest (i.e., lowest TSN) DATA chunks marked
// for retransmission will fit into a single packet, subject to constraint of
// the path MTU of the destination transport address to which the packet is
// being sent. Call this value K. Retransmit those K DATA chunks in a single
// packet. When a Fast Retransmit is being performed, the sender SHOULD
// ignore the value of cwnd and SHOULD NOT delay retransmission for this
// single packet."
SctpPacket::Builder builder(peer_verification_tag_, options_);
auto chunks = retransmission_queue_.GetChunksForFastRetransmit(
builder.bytes_remaining());
for (auto& [tsn, data] : chunks) {
if (capabilities_.message_interleaving) {
builder.Add(IDataChunk(tsn, std::move(data), false));
} else {
builder.Add(DataChunk(tsn, std::move(data), false));
}
}
Send(builder);
}
void TransmissionControlBlock::SendBufferedPackets(SctpPacket::Builder& builder,
Timestamp now) {
for (int packet_idx = 0;
packet_idx < options_.max_burst && retransmission_queue_.can_send_data();
++packet_idx) {
// Only add control chunks to the first packet that is sent, if sending
// multiple packets in one go (as allowed by the congestion window).
if (packet_idx == 0) {
if (cookie_echo_chunk_.has_value()) {
// https://tools.ietf.org/html/rfc4960#section-5.1
// "The COOKIE ECHO chunk can be bundled with any pending outbound DATA
// chunks, but it MUST be the first chunk in the packet..."
RTC_DCHECK(builder.empty());
builder.Add(*cookie_echo_chunk_);
}
// https://tools.ietf.org/html/rfc4960#section-6
// "Before an endpoint transmits a DATA chunk, if any received DATA
// chunks have not been acknowledged (e.g., due to delayed ack), the
// sender should create a SACK and bundle it with the outbound DATA chunk,
// as long as the size of the final SCTP packet does not exceed the
// current MTU."
if (data_tracker_.ShouldSendAck(/*also_if_delayed=*/true)) {
builder.Add(data_tracker_.CreateSelectiveAck(
reassembly_queue_.remaining_bytes()));
}
MaybeSendForwardTsn(builder, now);
absl::optional<ReConfigChunk> reconfig =
stream_reset_handler_.MakeStreamResetRequest();
if (reconfig.has_value()) {
builder.Add(*reconfig);
}
}
auto chunks =
retransmission_queue_.GetChunksToSend(now, builder.bytes_remaining());
if (!chunks.empty()) {
// https://datatracker.ietf.org/doc/html/rfc9260#section-8.3
// Sending DATA means that the path is not idle - restart heartbeat timer.
heartbeat_handler_.RestartTimer();
}
for (auto& [tsn, data] : chunks) {
if (capabilities_.message_interleaving) {
builder.Add(IDataChunk(tsn, std::move(data), false));
} else {
builder.Add(DataChunk(tsn, std::move(data), false));
}
}
// https://www.ietf.org/archive/id/draft-tuexen-tsvwg-sctp-zero-checksum-02.html#section-4.2
// "When an end point sends a packet containing a COOKIE ECHO chunk, it MUST
// include a correct CRC32c checksum in the packet containing the COOKIE
// ECHO chunk."
bool write_checksum =
!capabilities_.zero_checksum || cookie_echo_chunk_.has_value();
if (!packet_sender_.Send(builder, write_checksum)) {
break;
}
if (cookie_echo_chunk_.has_value()) {
// https://tools.ietf.org/html/rfc4960#section-5.1
// "... until the COOKIE ACK is returned the sender MUST NOT send any
// other packets to the peer."
break;
}
}
}
std::string TransmissionControlBlock::ToString() const {
rtc::StringBuilder sb;
sb.AppendFormat(
"verification_tag=%08x, last_cumulative_ack=%u, capabilities=",
*peer_verification_tag_, *data_tracker_.last_cumulative_acked_tsn());
if (capabilities_.partial_reliability) {
sb << "PR,";
}
if (capabilities_.message_interleaving) {
sb << "IL,";
}
if (capabilities_.reconfig) {
sb << "Reconfig,";
}
if (capabilities_.zero_checksum) {
sb << "ZeroChecksum,";
}
sb << " max_in=" << capabilities_.negotiated_maximum_incoming_streams;
sb << " max_out=" << capabilities_.negotiated_maximum_outgoing_streams;
return sb.Release();
}
HandoverReadinessStatus TransmissionControlBlock::GetHandoverReadiness() const {
HandoverReadinessStatus status;
status.Add(data_tracker_.GetHandoverReadiness());
status.Add(stream_reset_handler_.GetHandoverReadiness());
status.Add(reassembly_queue_.GetHandoverReadiness());
status.Add(retransmission_queue_.GetHandoverReadiness());
return status;
}
void TransmissionControlBlock::AddHandoverState(
DcSctpSocketHandoverState& state) {
state.capabilities.partial_reliability = capabilities_.partial_reliability;
state.capabilities.message_interleaving = capabilities_.message_interleaving;
state.capabilities.reconfig = capabilities_.reconfig;
state.capabilities.zero_checksum = capabilities_.zero_checksum;
state.capabilities.negotiated_maximum_incoming_streams =
capabilities_.negotiated_maximum_incoming_streams;
state.capabilities.negotiated_maximum_outgoing_streams =
capabilities_.negotiated_maximum_outgoing_streams;
state.my_verification_tag = my_verification_tag().value();
state.peer_verification_tag = peer_verification_tag().value();
state.my_initial_tsn = my_initial_tsn().value();
state.peer_initial_tsn = peer_initial_tsn().value();
state.tie_tag = tie_tag().value();
data_tracker_.AddHandoverState(state);
stream_reset_handler_.AddHandoverState(state);
reassembly_queue_.AddHandoverState(state);
retransmission_queue_.AddHandoverState(state);
}
void TransmissionControlBlock::RestoreFromState(
const DcSctpSocketHandoverState& state) {
data_tracker_.RestoreFromState(state);
retransmission_queue_.RestoreFromState(state);
reassembly_queue_.RestoreFromState(state);
}
} // namespace dcsctp