webrtc_m130/webrtc/video/vie_encoder.cc
perkj 803d97f159 Let ViEEncoder express resolution requests as Sinkwants.
This removes the VideoSendStream::LoadObserver interface and the implementation in WebrtcVideoSendStream and replace it with VideoSinkWants through the VideoSourceInterface.

To do that that, some stats for CPU adaptation is moved into VideoSendStream. Also handling of the CVO rtp header extension is moved to VideoSendStreamImpl.

BUG=webrtc:5687
TBR=mflodman@webrtc.org

Review-Url: https://codereview.webrtc.org/2304363002
Cr-Commit-Position: refs/heads/master@{#14877}
2016-11-01 18:45:54 +00:00

834 lines
31 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video/vie_encoder.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/trace_event.h"
#include "webrtc/base/timeutils.h"
#include "webrtc/modules/pacing/paced_sender.h"
#include "webrtc/modules/video_coding/include/video_coding.h"
#include "webrtc/modules/video_coding/include/video_coding_defines.h"
#include "webrtc/video/overuse_frame_detector.h"
#include "webrtc/video/send_statistics_proxy.h"
#include "webrtc/video_frame.h"
namespace webrtc {
namespace {
// Time interval for logging frame counts.
const int64_t kFrameLogIntervalMs = 60000;
VideoCodecType PayloadNameToCodecType(const std::string& payload_name) {
if (payload_name == "VP8")
return kVideoCodecVP8;
if (payload_name == "VP9")
return kVideoCodecVP9;
if (payload_name == "H264")
return kVideoCodecH264;
return kVideoCodecGeneric;
}
VideoCodec VideoEncoderConfigToVideoCodec(
const VideoEncoderConfig& config,
const std::vector<VideoStream>& streams,
const std::string& payload_name,
int payload_type) {
static const int kEncoderMinBitrateKbps = 30;
RTC_DCHECK(!streams.empty());
RTC_DCHECK_GE(config.min_transmit_bitrate_bps, 0);
VideoCodec video_codec;
memset(&video_codec, 0, sizeof(video_codec));
video_codec.codecType = PayloadNameToCodecType(payload_name);
switch (config.content_type) {
case VideoEncoderConfig::ContentType::kRealtimeVideo:
video_codec.mode = kRealtimeVideo;
break;
case VideoEncoderConfig::ContentType::kScreen:
video_codec.mode = kScreensharing;
if (streams.size() == 1 &&
streams[0].temporal_layer_thresholds_bps.size() == 1) {
video_codec.targetBitrate =
streams[0].temporal_layer_thresholds_bps[0] / 1000;
}
break;
}
if (config.encoder_specific_settings)
config.encoder_specific_settings->FillEncoderSpecificSettings(&video_codec);
switch (video_codec.codecType) {
case kVideoCodecVP8: {
if (!config.encoder_specific_settings)
video_codec.codecSpecific.VP8 = VideoEncoder::GetDefaultVp8Settings();
video_codec.codecSpecific.VP8.numberOfTemporalLayers =
static_cast<unsigned char>(
streams.back().temporal_layer_thresholds_bps.size() + 1);
break;
}
case kVideoCodecVP9: {
if (!config.encoder_specific_settings)
video_codec.codecSpecific.VP9 = VideoEncoder::GetDefaultVp9Settings();
if (video_codec.mode == kScreensharing &&
config.encoder_specific_settings) {
video_codec.codecSpecific.VP9.flexibleMode = true;
// For now VP9 screensharing use 1 temporal and 2 spatial layers.
RTC_DCHECK_EQ(1, video_codec.codecSpecific.VP9.numberOfTemporalLayers);
RTC_DCHECK_EQ(2, video_codec.codecSpecific.VP9.numberOfSpatialLayers);
}
video_codec.codecSpecific.VP9.numberOfTemporalLayers =
static_cast<unsigned char>(
streams.back().temporal_layer_thresholds_bps.size() + 1);
break;
}
case kVideoCodecH264: {
if (!config.encoder_specific_settings)
video_codec.codecSpecific.H264 = VideoEncoder::GetDefaultH264Settings();
break;
}
default:
// TODO(pbos): Support encoder_settings codec-agnostically.
RTC_DCHECK(!config.encoder_specific_settings)
<< "Encoder-specific settings for codec type not wired up.";
break;
}
strncpy(video_codec.plName, payload_name.c_str(), kPayloadNameSize - 1);
video_codec.plName[kPayloadNameSize - 1] = '\0';
video_codec.plType = payload_type;
video_codec.numberOfSimulcastStreams =
static_cast<unsigned char>(streams.size());
video_codec.minBitrate = streams[0].min_bitrate_bps / 1000;
if (video_codec.minBitrate < kEncoderMinBitrateKbps)
video_codec.minBitrate = kEncoderMinBitrateKbps;
RTC_DCHECK_LE(streams.size(), static_cast<size_t>(kMaxSimulcastStreams));
if (video_codec.codecType == kVideoCodecVP9) {
// If the vector is empty, bitrates will be configured automatically.
RTC_DCHECK(config.spatial_layers.empty() ||
config.spatial_layers.size() ==
video_codec.codecSpecific.VP9.numberOfSpatialLayers);
RTC_DCHECK_LE(video_codec.codecSpecific.VP9.numberOfSpatialLayers,
kMaxSimulcastStreams);
for (size_t i = 0; i < config.spatial_layers.size(); ++i)
video_codec.spatialLayers[i] = config.spatial_layers[i];
}
for (size_t i = 0; i < streams.size(); ++i) {
SimulcastStream* sim_stream = &video_codec.simulcastStream[i];
RTC_DCHECK_GT(streams[i].width, 0u);
RTC_DCHECK_GT(streams[i].height, 0u);
RTC_DCHECK_GT(streams[i].max_framerate, 0);
// Different framerates not supported per stream at the moment.
RTC_DCHECK_EQ(streams[i].max_framerate, streams[0].max_framerate);
RTC_DCHECK_GE(streams[i].min_bitrate_bps, 0);
RTC_DCHECK_GE(streams[i].target_bitrate_bps, streams[i].min_bitrate_bps);
RTC_DCHECK_GE(streams[i].max_bitrate_bps, streams[i].target_bitrate_bps);
RTC_DCHECK_GE(streams[i].max_qp, 0);
sim_stream->width = static_cast<uint16_t>(streams[i].width);
sim_stream->height = static_cast<uint16_t>(streams[i].height);
sim_stream->minBitrate = streams[i].min_bitrate_bps / 1000;
sim_stream->targetBitrate = streams[i].target_bitrate_bps / 1000;
sim_stream->maxBitrate = streams[i].max_bitrate_bps / 1000;
sim_stream->qpMax = streams[i].max_qp;
sim_stream->numberOfTemporalLayers = static_cast<unsigned char>(
streams[i].temporal_layer_thresholds_bps.size() + 1);
video_codec.width = std::max(video_codec.width,
static_cast<uint16_t>(streams[i].width));
video_codec.height = std::max(
video_codec.height, static_cast<uint16_t>(streams[i].height));
video_codec.minBitrate =
std::min(static_cast<uint16_t>(video_codec.minBitrate),
static_cast<uint16_t>(streams[i].min_bitrate_bps / 1000));
video_codec.maxBitrate += streams[i].max_bitrate_bps / 1000;
video_codec.qpMax = std::max(video_codec.qpMax,
static_cast<unsigned int>(streams[i].max_qp));
}
if (video_codec.maxBitrate == 0) {
// Unset max bitrate -> cap to one bit per pixel.
video_codec.maxBitrate =
(video_codec.width * video_codec.height * video_codec.maxFramerate) /
1000;
}
if (video_codec.maxBitrate < kEncoderMinBitrateKbps)
video_codec.maxBitrate = kEncoderMinBitrateKbps;
RTC_DCHECK_GT(streams[0].max_framerate, 0);
video_codec.maxFramerate = streams[0].max_framerate;
return video_codec;
}
// TODO(pbos): Lower these thresholds (to closer to 100%) when we handle
// pipelining encoders better (multiple input frames before something comes
// out). This should effectively turn off CPU adaptations for systems that
// remotely cope with the load right now.
CpuOveruseOptions GetCpuOveruseOptions(bool full_overuse_time) {
CpuOveruseOptions options;
if (full_overuse_time) {
options.low_encode_usage_threshold_percent = 150;
options.high_encode_usage_threshold_percent = 200;
}
return options;
}
} // namespace
class ViEEncoder::ConfigureEncoderTask : public rtc::QueuedTask {
public:
ConfigureEncoderTask(ViEEncoder* vie_encoder,
VideoEncoderConfig config,
size_t max_data_payload_length)
: vie_encoder_(vie_encoder),
config_(std::move(config)),
max_data_payload_length_(max_data_payload_length) {}
private:
bool Run() override {
vie_encoder_->ConfigureEncoderOnTaskQueue(std::move(config_),
max_data_payload_length_);
return true;
}
ViEEncoder* const vie_encoder_;
VideoEncoderConfig config_;
size_t max_data_payload_length_;
};
class ViEEncoder::EncodeTask : public rtc::QueuedTask {
public:
EncodeTask(const VideoFrame& frame,
ViEEncoder* vie_encoder,
int64_t time_when_posted_in_ms,
bool log_stats)
: vie_encoder_(vie_encoder),
time_when_posted_ms_(time_when_posted_in_ms),
log_stats_(log_stats) {
frame_ = frame;
++vie_encoder_->posted_frames_waiting_for_encode_;
}
private:
bool Run() override {
RTC_DCHECK_RUN_ON(&vie_encoder_->encoder_queue_);
RTC_DCHECK_GT(vie_encoder_->posted_frames_waiting_for_encode_.Value(), 0);
vie_encoder_->stats_proxy_->OnIncomingFrame(frame_.width(),
frame_.height());
++vie_encoder_->captured_frame_count_;
if (--vie_encoder_->posted_frames_waiting_for_encode_ == 0) {
vie_encoder_->EncodeVideoFrame(frame_, time_when_posted_ms_);
} else {
// There is a newer frame in flight. Do not encode this frame.
LOG(LS_VERBOSE)
<< "Incoming frame dropped due to that the encoder is blocked.";
++vie_encoder_->dropped_frame_count_;
}
if (log_stats_) {
LOG(LS_INFO) << "Number of frames: captured "
<< vie_encoder_->captured_frame_count_
<< ", dropped (due to encoder blocked) "
<< vie_encoder_->dropped_frame_count_ << ", interval_ms "
<< kFrameLogIntervalMs;
vie_encoder_->captured_frame_count_ = 0;
vie_encoder_->dropped_frame_count_ = 0;
}
return true;
}
VideoFrame frame_;
ViEEncoder* const vie_encoder_;
const int64_t time_when_posted_ms_;
const bool log_stats_;
};
// VideoSourceProxy is responsible ensuring thread safety between calls to
// ViEEncoder::SetSource that will happen on libjingle's worker thread when a
// video capturer is connected to the encoder and the encoder task queue
// (encoder_queue_) where the encoder reports its VideoSinkWants.
class ViEEncoder::VideoSourceProxy {
public:
explicit VideoSourceProxy(ViEEncoder* vie_encoder)
: vie_encoder_(vie_encoder),
degradation_preference_(
VideoSendStream::DegradationPreference::kMaintainResolution),
source_(nullptr) {}
void SetSource(
rtc::VideoSourceInterface<VideoFrame>* source,
const VideoSendStream::DegradationPreference& degradation_preference) {
// Called on libjingle's worker thread.
RTC_DCHECK_CALLED_SEQUENTIALLY(&main_checker_);
rtc::VideoSourceInterface<VideoFrame>* old_source = nullptr;
rtc::VideoSinkWants wants;
{
rtc::CritScope lock(&crit_);
old_source = source_;
source_ = source;
degradation_preference_ = degradation_preference;
wants = current_wants();
}
if (old_source != source && old_source != nullptr) {
old_source->RemoveSink(vie_encoder_);
}
if (!source) {
return;
}
source->AddOrUpdateSink(vie_encoder_, wants);
}
void SetWantsRotationApplied(bool rotation_applied) {
rtc::CritScope lock(&crit_);
sink_wants_.rotation_applied = rotation_applied;
disabled_scaling_sink_wants_.rotation_applied = rotation_applied;
if (source_) {
source_->AddOrUpdateSink(vie_encoder_, current_wants());
}
}
void RequestResolutionLowerThan(int pixel_count) {
// Called on the encoder task queue.
rtc::CritScope lock(&crit_);
if (!IsResolutionScalingEnabledLocked()) {
// This can happen since |degradation_preference_| is set on
// libjingle's worker thread but the adaptation is done on the encoder
// task queue.
return;
}
// The input video frame size will have a resolution with less than or
// equal to |max_pixel_count| depending on how the source can scale the
// input frame size.
sink_wants_.max_pixel_count = rtc::Optional<int>((pixel_count * 3) / 5);
sink_wants_.max_pixel_count_step_up = rtc::Optional<int>();
if (source_)
source_->AddOrUpdateSink(vie_encoder_, sink_wants_);
}
void RequestHigherResolutionThan(int pixel_count) {
rtc::CritScope lock(&crit_);
if (!IsResolutionScalingEnabledLocked()) {
// This can happen since |degradation_preference_| is set on
// libjingle's worker thread but the adaptation is done on the encoder
// task
// queue.
return;
}
// The input video frame size will have a resolution with "one step up"
// pixels than |max_pixel_count_step_up| where "one step up" depends on
// how the source can scale the input frame size.
sink_wants_.max_pixel_count = rtc::Optional<int>();
sink_wants_.max_pixel_count_step_up = rtc::Optional<int>(pixel_count);
if (source_)
source_->AddOrUpdateSink(vie_encoder_, sink_wants_);
}
private:
bool IsResolutionScalingEnabledLocked() const
EXCLUSIVE_LOCKS_REQUIRED(&crit_) {
return degradation_preference_ !=
VideoSendStream::DegradationPreference::kMaintainResolution;
}
const rtc::VideoSinkWants& current_wants() const
EXCLUSIVE_LOCKS_REQUIRED(&crit_) {
return IsResolutionScalingEnabledLocked() ? sink_wants_
: disabled_scaling_sink_wants_;
}
rtc::CriticalSection crit_;
rtc::SequencedTaskChecker main_checker_;
ViEEncoder* const vie_encoder_;
rtc::VideoSinkWants sink_wants_ GUARDED_BY(&crit_);
rtc::VideoSinkWants disabled_scaling_sink_wants_ GUARDED_BY(&crit_);
VideoSendStream::DegradationPreference degradation_preference_
GUARDED_BY(&crit_);
rtc::VideoSourceInterface<VideoFrame>* source_ GUARDED_BY(&crit_);
RTC_DISALLOW_COPY_AND_ASSIGN(VideoSourceProxy);
};
ViEEncoder::ViEEncoder(uint32_t number_of_cores,
SendStatisticsProxy* stats_proxy,
const VideoSendStream::Config::EncoderSettings& settings,
rtc::VideoSinkInterface<VideoFrame>* pre_encode_callback,
EncodedFrameObserver* encoder_timing)
: shutdown_event_(true /* manual_reset */, false),
number_of_cores_(number_of_cores),
source_proxy_(new VideoSourceProxy(this)),
sink_(nullptr),
settings_(settings),
codec_type_(PayloadNameToCodecType(settings.payload_name)),
video_sender_(Clock::GetRealTimeClock(), this, this),
overuse_detector_(Clock::GetRealTimeClock(),
GetCpuOveruseOptions(settings.full_overuse_time),
this,
encoder_timing,
stats_proxy),
stats_proxy_(stats_proxy),
pre_encode_callback_(pre_encode_callback),
module_process_thread_(nullptr),
pending_encoder_reconfiguration_(false),
encoder_start_bitrate_bps_(0),
max_data_payload_length_(0),
last_observed_bitrate_bps_(0),
encoder_paused_and_dropped_frame_(false),
has_received_sli_(false),
picture_id_sli_(0),
has_received_rpsi_(false),
picture_id_rpsi_(0),
clock_(Clock::GetRealTimeClock()),
degradation_preference_(
VideoSendStream::DegradationPreference::kBalanced),
cpu_restricted_counter_(0),
last_frame_width_(0),
last_frame_height_(0),
last_captured_timestamp_(0),
delta_ntp_internal_ms_(clock_->CurrentNtpInMilliseconds() -
clock_->TimeInMilliseconds()),
last_frame_log_ms_(clock_->TimeInMilliseconds()),
captured_frame_count_(0),
dropped_frame_count_(0),
encoder_queue_("EncoderQueue") {
encoder_queue_.PostTask([this] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
overuse_detector_.StartCheckForOveruse();
video_sender_.RegisterExternalEncoder(
settings_.encoder, settings_.payload_type, settings_.internal_source);
});
}
ViEEncoder::~ViEEncoder() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(shutdown_event_.Wait(0))
<< "Must call ::Stop() before destruction.";
}
void ViEEncoder::Stop() {
RTC_DCHECK_RUN_ON(&thread_checker_);
source_proxy_->SetSource(nullptr, VideoSendStream::DegradationPreference());
encoder_queue_.PostTask([this] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
overuse_detector_.StopCheckForOveruse();
video_sender_.RegisterExternalEncoder(nullptr, settings_.payload_type,
false);
shutdown_event_.Set();
});
shutdown_event_.Wait(rtc::Event::kForever);
}
void ViEEncoder::RegisterProcessThread(ProcessThread* module_process_thread) {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(!module_process_thread_);
module_process_thread_ = module_process_thread;
module_process_thread_->RegisterModule(&video_sender_);
module_process_thread_checker_.DetachFromThread();
}
void ViEEncoder::DeRegisterProcessThread() {
RTC_DCHECK_RUN_ON(&thread_checker_);
module_process_thread_->DeRegisterModule(&video_sender_);
}
void ViEEncoder::SetSource(
rtc::VideoSourceInterface<VideoFrame>* source,
const VideoSendStream::DegradationPreference& degradation_preference) {
RTC_DCHECK_RUN_ON(&thread_checker_);
source_proxy_->SetSource(source, degradation_preference);
encoder_queue_.PostTask([this, degradation_preference] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
degradation_preference_ = degradation_preference;
// Set the stats for if we are currently CPU restricted. We are CPU
// restricted depending on degradation preference and
// if the overusedetector has currently detected overuse which is counted in
// |cpu_restricted_counter_|
// We do this on the encoder task queue to avoid a race with the stats set
// in ViEEncoder::NormalUsage and ViEEncoder::OveruseDetected.
stats_proxy_->SetCpuRestrictedResolution(
degradation_preference_ !=
VideoSendStream::DegradationPreference::kMaintainResolution &&
cpu_restricted_counter_ != 0);
});
}
void ViEEncoder::SetSink(EncoderSink* sink, bool rotation_applied) {
source_proxy_->SetWantsRotationApplied(rotation_applied);
encoder_queue_.PostTask([this, sink] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
sink_ = sink;
});
}
void ViEEncoder::SetStartBitrate(int start_bitrate_bps) {
encoder_queue_.PostTask([this, start_bitrate_bps] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
encoder_start_bitrate_bps_ = start_bitrate_bps;
});
}
void ViEEncoder::ConfigureEncoder(VideoEncoderConfig config,
size_t max_data_payload_length) {
encoder_queue_.PostTask(
std::unique_ptr<rtc::QueuedTask>(new ConfigureEncoderTask(
this, std::move(config), max_data_payload_length)));
}
void ViEEncoder::ConfigureEncoderOnTaskQueue(VideoEncoderConfig config,
size_t max_data_payload_length) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
RTC_DCHECK(sink_);
LOG(LS_INFO) << "ConfigureEncoder requested.";
max_data_payload_length_ = max_data_payload_length;
encoder_config_ = std::move(config);
pending_encoder_reconfiguration_ = true;
// Reconfigure the encoder now if the encoder has an internal source or
// if the frame resolution is known. Otherwise, the reconfiguration is
// deferred until the next frame to minimize the number of reconfigurations.
// The codec configuration depends on incoming video frame size.
if (last_frame_info_) {
ReconfigureEncoder();
} else if (settings_.internal_source) {
last_frame_info_ = rtc::Optional<VideoFrameInfo>(
VideoFrameInfo(176, 144, kVideoRotation_0, false));
ReconfigureEncoder();
}
}
void ViEEncoder::ReconfigureEncoder() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
RTC_DCHECK(pending_encoder_reconfiguration_);
std::vector<VideoStream> streams =
encoder_config_.video_stream_factory->CreateEncoderStreams(
last_frame_info_->width, last_frame_info_->height, encoder_config_);
VideoCodec codec = VideoEncoderConfigToVideoCodec(
encoder_config_, streams, settings_.payload_name, settings_.payload_type);
codec.startBitrate =
std::max(encoder_start_bitrate_bps_ / 1000, codec.minBitrate);
codec.startBitrate = std::min(codec.startBitrate, codec.maxBitrate);
codec.expect_encode_from_texture = last_frame_info_->is_texture;
bool success = video_sender_.RegisterSendCodec(
&codec, number_of_cores_,
static_cast<uint32_t>(max_data_payload_length_)) == VCM_OK;
if (!success) {
LOG(LS_ERROR) << "Failed to configure encoder.";
RTC_DCHECK(success);
}
rate_allocator_.reset(new SimulcastRateAllocator(codec));
if (stats_proxy_) {
stats_proxy_->OnEncoderReconfigured(encoder_config_,
rate_allocator_->GetPreferedBitrate());
}
pending_encoder_reconfiguration_ = false;
if (stats_proxy_) {
stats_proxy_->OnEncoderReconfigured(encoder_config_,
rate_allocator_->GetPreferedBitrate());
}
sink_->OnEncoderConfigurationChanged(
std::move(streams), encoder_config_.min_transmit_bitrate_bps);
}
void ViEEncoder::OnFrame(const VideoFrame& video_frame) {
RTC_DCHECK_RUNS_SERIALIZED(&incoming_frame_race_checker_);
VideoFrame incoming_frame = video_frame;
// Local time in webrtc time base.
int64_t current_time = clock_->TimeInMilliseconds();
incoming_frame.set_render_time_ms(current_time);
// Capture time may come from clock with an offset and drift from clock_.
int64_t capture_ntp_time_ms;
if (video_frame.ntp_time_ms() != 0) {
capture_ntp_time_ms = video_frame.ntp_time_ms();
} else if (video_frame.render_time_ms() != 0) {
capture_ntp_time_ms = video_frame.render_time_ms() + delta_ntp_internal_ms_;
} else {
capture_ntp_time_ms = current_time + delta_ntp_internal_ms_;
}
incoming_frame.set_ntp_time_ms(capture_ntp_time_ms);
// Convert NTP time, in ms, to RTP timestamp.
const int kMsToRtpTimestamp = 90;
incoming_frame.set_timestamp(
kMsToRtpTimestamp * static_cast<uint32_t>(incoming_frame.ntp_time_ms()));
if (incoming_frame.ntp_time_ms() <= last_captured_timestamp_) {
// We don't allow the same capture time for two frames, drop this one.
LOG(LS_WARNING) << "Same/old NTP timestamp ("
<< incoming_frame.ntp_time_ms()
<< " <= " << last_captured_timestamp_
<< ") for incoming frame. Dropping.";
return;
}
bool log_stats = false;
if (current_time - last_frame_log_ms_ > kFrameLogIntervalMs) {
last_frame_log_ms_ = current_time;
log_stats = true;
}
last_captured_timestamp_ = incoming_frame.ntp_time_ms();
encoder_queue_.PostTask(std::unique_ptr<rtc::QueuedTask>(new EncodeTask(
incoming_frame, this, clock_->TimeInMilliseconds(), log_stats)));
}
bool ViEEncoder::EncoderPaused() const {
RTC_DCHECK_RUN_ON(&encoder_queue_);
// Pause video if paused by caller or as long as the network is down or the
// pacer queue has grown too large in buffered mode.
// If the pacer queue has grown too large or the network is down,
// last_observed_bitrate_bps_ will be 0.
return last_observed_bitrate_bps_ == 0;
}
void ViEEncoder::TraceFrameDropStart() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
// Start trace event only on the first frame after encoder is paused.
if (!encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = true;
return;
}
void ViEEncoder::TraceFrameDropEnd() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
// End trace event on first frame after encoder resumes, if frame was dropped.
if (encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = false;
}
void ViEEncoder::EncodeVideoFrame(const VideoFrame& video_frame,
int64_t time_when_posted_in_ms) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (pre_encode_callback_)
pre_encode_callback_->OnFrame(video_frame);
if (!last_frame_info_ || video_frame.width() != last_frame_info_->width ||
video_frame.height() != last_frame_info_->height ||
video_frame.rotation() != last_frame_info_->rotation ||
video_frame.is_texture() != last_frame_info_->is_texture) {
pending_encoder_reconfiguration_ = true;
last_frame_info_ = rtc::Optional<VideoFrameInfo>(
VideoFrameInfo(video_frame.width(), video_frame.height(),
video_frame.rotation(), video_frame.is_texture()));
LOG(LS_INFO) << "Video frame parameters changed: dimensions="
<< last_frame_info_->width << "x" << last_frame_info_->height
<< ", rotation=" << last_frame_info_->rotation
<< ", texture=" << last_frame_info_->is_texture;
}
if (pending_encoder_reconfiguration_) {
ReconfigureEncoder();
}
if (EncoderPaused()) {
TraceFrameDropStart();
return;
}
TraceFrameDropEnd();
last_frame_height_ = video_frame.height();
last_frame_width_ = video_frame.width();
TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", video_frame.render_time_ms(),
"Encode");
overuse_detector_.FrameCaptured(video_frame, time_when_posted_in_ms);
if (codec_type_ == webrtc::kVideoCodecVP8) {
webrtc::CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = webrtc::kVideoCodecVP8;
codec_specific_info.codecSpecific.VP8.hasReceivedRPSI =
has_received_rpsi_;
codec_specific_info.codecSpecific.VP8.hasReceivedSLI =
has_received_sli_;
codec_specific_info.codecSpecific.VP8.pictureIdRPSI =
picture_id_rpsi_;
codec_specific_info.codecSpecific.VP8.pictureIdSLI =
picture_id_sli_;
has_received_sli_ = false;
has_received_rpsi_ = false;
video_sender_.AddVideoFrame(video_frame, &codec_specific_info);
return;
}
video_sender_.AddVideoFrame(video_frame, nullptr);
}
void ViEEncoder::SendKeyFrame() {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask([this] { SendKeyFrame(); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
video_sender_.IntraFrameRequest(0);
}
EncodedImageCallback::Result ViEEncoder::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
// Encoded is called on whatever thread the real encoder implementation run
// on. In the case of hardware encoders, there might be several encoders
// running in parallel on different threads.
if (stats_proxy_) {
stats_proxy_->OnSendEncodedImage(encoded_image, codec_specific_info);
}
EncodedImageCallback::Result result =
sink_->OnEncodedImage(encoded_image, codec_specific_info, fragmentation);
int64_t time_sent = clock_->TimeInMilliseconds();
uint32_t timestamp = encoded_image._timeStamp;
encoder_queue_.PostTask([this, timestamp, time_sent] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
overuse_detector_.FrameSent(timestamp, time_sent);
});
return result;
}
void ViEEncoder::SendStatistics(uint32_t bit_rate, uint32_t frame_rate) {
RTC_DCHECK(module_process_thread_checker_.CalledOnValidThread());
if (stats_proxy_)
stats_proxy_->OnEncoderStatsUpdate(frame_rate, bit_rate);
}
void ViEEncoder::OnReceivedSLI(uint8_t picture_id) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask([this, picture_id] { OnReceivedSLI(picture_id); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
picture_id_sli_ = picture_id;
has_received_sli_ = true;
}
void ViEEncoder::OnReceivedRPSI(uint64_t picture_id) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask([this, picture_id] { OnReceivedRPSI(picture_id); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
picture_id_rpsi_ = picture_id;
has_received_rpsi_ = true;
}
void ViEEncoder::OnReceivedIntraFrameRequest(size_t stream_index) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask(
[this, stream_index] { OnReceivedIntraFrameRequest(stream_index); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
// Key frame request from remote side, signal to VCM.
TRACE_EVENT0("webrtc", "OnKeyFrameRequest");
video_sender_.IntraFrameRequest(stream_index);
}
void ViEEncoder::OnBitrateUpdated(uint32_t bitrate_bps,
uint8_t fraction_lost,
int64_t round_trip_time_ms) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask(
[this, bitrate_bps, fraction_lost, round_trip_time_ms] {
OnBitrateUpdated(bitrate_bps, fraction_lost, round_trip_time_ms);
});
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
RTC_DCHECK(sink_) << "sink_ must be set before the encoder is active.";
LOG(LS_VERBOSE) << "OnBitrateUpdated, bitrate " << bitrate_bps
<< " packet loss " << static_cast<int>(fraction_lost)
<< " rtt " << round_trip_time_ms;
video_sender_.SetChannelParameters(bitrate_bps, fraction_lost,
round_trip_time_ms);
encoder_start_bitrate_bps_ =
bitrate_bps != 0 ? bitrate_bps : encoder_start_bitrate_bps_;
bool video_is_suspended = bitrate_bps == 0;
bool video_suspension_changed =
video_is_suspended != (last_observed_bitrate_bps_ == 0);
last_observed_bitrate_bps_ = bitrate_bps;
if (stats_proxy_ && video_suspension_changed) {
LOG(LS_INFO) << "Video suspend state changed to: "
<< (video_is_suspended ? "suspended" : "not suspended");
stats_proxy_->OnSuspendChange(video_is_suspended);
}
}
void ViEEncoder::OveruseDetected() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (degradation_preference_ ==
VideoSendStream::DegradationPreference::kMaintainResolution ||
cpu_restricted_counter_ >= kMaxCpuDowngrades) {
return;
}
LOG(LS_INFO) << "CPU overuse detected. Requesting lower resolution.";
// Request lower resolution if the current resolution is lower than last time
// we asked for the resolution to be lowered.
// Update stats accordingly.
int current_pixel_count = last_frame_height_ * last_frame_width_;
if (!max_pixel_count_ || current_pixel_count < *max_pixel_count_) {
max_pixel_count_ = rtc::Optional<int>(current_pixel_count);
max_pixel_count_step_up_ = rtc::Optional<int>();
stats_proxy_->OnCpuRestrictedResolutionChanged(true);
++cpu_restricted_counter_;
source_proxy_->RequestResolutionLowerThan(current_pixel_count);
}
}
void ViEEncoder::NormalUsage() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (degradation_preference_ ==
VideoSendStream::DegradationPreference::kMaintainResolution ||
cpu_restricted_counter_ == 0) {
return;
}
LOG(LS_INFO) << "CPU underuse detected. Requesting higher resolution.";
int current_pixel_count = last_frame_height_ * last_frame_width_;
// Request higher resolution if we are CPU restricted and the the current
// resolution is higher than last time we requested higher resolution.
// Update stats accordingly.
if (!max_pixel_count_step_up_ ||
current_pixel_count > *max_pixel_count_step_up_) {
max_pixel_count_ = rtc::Optional<int>();
max_pixel_count_step_up_ = rtc::Optional<int>(current_pixel_count);
--cpu_restricted_counter_;
stats_proxy_->OnCpuRestrictedResolutionChanged(cpu_restricted_counter_ > 0);
source_proxy_->RequestHigherResolutionThan(current_pixel_count);
}
}
} // namespace webrtc