webrtc_m130/api/units/timestamp.h
Sebastian Jansson 8e06419ee9 Makes units constexpr when possible.
This makes the constructor and the unchecked create functions
constexpr on the unit classes Timestamp, TimeDelta, Datarate and
DataSize. This allows using the units in constexpr constants.
Unchecked access methods are made constexpr as well. Making them
usable in static asserts.

Constexpr create functions for checked construction is added in
a separate CL.

Bug: webrtc:9574
Change-Id: I605ae2e8572195dbb2078c283056208be0f43333
Reviewed-on: https://webrtc-review.googlesource.com/91160
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24206}
2018-08-07 11:30:21 +00:00

177 lines
5.7 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_UNITS_TIMESTAMP_H_
#define API_UNITS_TIMESTAMP_H_
#include <stdint.h>
#include <limits>
#include <string>
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace timestamp_impl {
constexpr int64_t kPlusInfinityVal = std::numeric_limits<int64_t>::max();
constexpr int64_t kMinusInfinityVal = std::numeric_limits<int64_t>::min();
} // namespace timestamp_impl
// Timestamp represents the time that has passed since some unspecified epoch.
// The epoch is assumed to be before any represented timestamps, this means that
// negative values are not valid. The most notable feature is that the
// difference of two Timestamps results in a TimeDelta.
class Timestamp {
public:
Timestamp() = delete;
static constexpr Timestamp Infinity() {
return Timestamp(timestamp_impl::kPlusInfinityVal);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static Timestamp seconds(T seconds) {
RTC_DCHECK_GE(seconds, 0);
RTC_DCHECK_LT(seconds, timestamp_impl::kPlusInfinityVal / 1000000);
return Timestamp(rtc::dchecked_cast<int64_t>(seconds) * 1000000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static Timestamp ms(T milliseconds) {
RTC_DCHECK_GE(milliseconds, 0);
RTC_DCHECK_LT(milliseconds, timestamp_impl::kPlusInfinityVal / 1000);
return Timestamp(rtc::dchecked_cast<int64_t>(milliseconds) * 1000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static Timestamp us(T microseconds) {
RTC_DCHECK_GE(microseconds, 0);
RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal);
return Timestamp(rtc::dchecked_cast<int64_t>(microseconds));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp seconds(T seconds) {
return Timestamp::us(seconds * 1e6);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp ms(T milliseconds) {
return Timestamp::us(milliseconds * 1e3);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp us(T microseconds) {
if (microseconds == std::numeric_limits<double>::infinity()) {
return Infinity();
} else {
RTC_DCHECK(!std::isnan(microseconds));
RTC_DCHECK_GE(microseconds, 0);
RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal);
return Timestamp(rtc::dchecked_cast<int64_t>(microseconds));
}
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type seconds() const {
return rtc::dchecked_cast<T>((us() + 500000) / 1000000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type ms() const {
return rtc::dchecked_cast<T>((us() + 500) / 1000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type us() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(microseconds_);
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type seconds()
const {
return us<T>() * 1e-6;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type ms()
const {
return us<T>() * 1e-3;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type us()
const {
if (IsInfinite()) {
return std::numeric_limits<T>::infinity();
} else {
return microseconds_;
}
}
constexpr bool IsInfinite() const {
return microseconds_ == timestamp_impl::kPlusInfinityVal;
}
constexpr bool IsFinite() const { return !IsInfinite(); }
TimeDelta operator-(const Timestamp& other) const {
return TimeDelta::us(us() - other.us());
}
Timestamp operator-(const TimeDelta& delta) const {
return Timestamp::us(us() - delta.us());
}
Timestamp operator+(const TimeDelta& delta) const {
return Timestamp::us(us() + delta.us());
}
Timestamp& operator-=(const TimeDelta& other) {
microseconds_ -= other.us();
return *this;
}
Timestamp& operator+=(const TimeDelta& other) {
microseconds_ += other.us();
return *this;
}
bool operator==(const Timestamp& other) const {
return microseconds_ == other.microseconds_;
}
bool operator!=(const Timestamp& other) const {
return microseconds_ != other.microseconds_;
}
bool operator<=(const Timestamp& other) const {
return microseconds_ <= other.microseconds_;
}
bool operator>=(const Timestamp& other) const {
return microseconds_ >= other.microseconds_;
}
bool operator>(const Timestamp& other) const {
return microseconds_ > other.microseconds_;
}
bool operator<(const Timestamp& other) const {
return microseconds_ < other.microseconds_;
}
private:
explicit constexpr Timestamp(int64_t us) : microseconds_(us) {}
int64_t microseconds_;
};
std::string ToString(const Timestamp& value);
} // namespace webrtc
#endif // API_UNITS_TIMESTAMP_H_