This CL balances the NLP tradeoff in AEC3 to properly handle the cases when the echo path is so strong that it saturates the echo and when it is so weak that the echo is very low compared to nearend. Bug: webrtc:8411, webrtc:8412, chromium:775653 Change-Id: I5aff74dfadd51cac1ce71b1cb935d68a5be6918d Reviewed-on: https://webrtc-review.googlesource.com/14120 Commit-Queue: Per Åhgren <peah@webrtc.org> Reviewed-by: Per Åhgren <peah@webrtc.org> Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org> Cr-Commit-Position: refs/heads/master@{#20418}
266 lines
9.6 KiB
C++
266 lines
9.6 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
|
|
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
// Estimates the echo generating signal power as gated maximal power over a time
|
|
// window.
|
|
void EchoGeneratingPower(const RenderBuffer& render_buffer,
|
|
size_t min_delay,
|
|
size_t max_delay,
|
|
std::array<float, kFftLengthBy2Plus1>* X2) {
|
|
X2->fill(0.f);
|
|
for (size_t k = min_delay; k <= max_delay; ++k) {
|
|
std::transform(X2->begin(), X2->end(), render_buffer.Spectrum(k).begin(),
|
|
X2->begin(),
|
|
[](float a, float b) { return std::max(a, b); });
|
|
}
|
|
|
|
// Apply soft noise gate of -78 dBFS.
|
|
static constexpr float kNoiseGatePower = 27509.42f;
|
|
std::for_each(X2->begin(), X2->end(), [](float& a) {
|
|
if (kNoiseGatePower > a) {
|
|
a = std::max(0.f, a - 0.3f * (kNoiseGatePower - a));
|
|
}
|
|
});
|
|
}
|
|
|
|
constexpr int kNoiseFloorCounterMax = 50;
|
|
constexpr float kNoiseFloorMin = 10.f * 10.f * 128.f * 128.f;
|
|
|
|
// Updates estimate for the power of the stationary noise component in the
|
|
// render signal.
|
|
void RenderNoisePower(
|
|
const RenderBuffer& render_buffer,
|
|
std::array<float, kFftLengthBy2Plus1>* X2_noise_floor,
|
|
std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) {
|
|
RTC_DCHECK(X2_noise_floor);
|
|
RTC_DCHECK(X2_noise_floor_counter);
|
|
|
|
const auto render_power = render_buffer.Spectrum(0);
|
|
RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size());
|
|
RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size());
|
|
|
|
// Estimate the stationary noise power in a minimum statistics manner.
|
|
for (size_t k = 0; k < render_power.size(); ++k) {
|
|
// Decrease rapidly.
|
|
if (render_power[k] < (*X2_noise_floor)[k]) {
|
|
(*X2_noise_floor)[k] = render_power[k];
|
|
(*X2_noise_floor_counter)[k] = 0;
|
|
} else {
|
|
// Increase in a delayed, leaky manner.
|
|
if ((*X2_noise_floor_counter)[k] >= kNoiseFloorCounterMax) {
|
|
(*X2_noise_floor)[k] =
|
|
std::max((*X2_noise_floor)[k] * 1.1f, kNoiseFloorMin);
|
|
} else {
|
|
++(*X2_noise_floor_counter)[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config)
|
|
: config_(config) {
|
|
Reset();
|
|
}
|
|
|
|
ResidualEchoEstimator::~ResidualEchoEstimator() = default;
|
|
|
|
void ResidualEchoEstimator::Estimate(
|
|
const AecState& aec_state,
|
|
const RenderBuffer& render_buffer,
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
RTC_DCHECK(R2);
|
|
|
|
// Estimate the power of the stationary noise in the render signal.
|
|
RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_);
|
|
|
|
// Estimate the residual echo power.
|
|
if (aec_state.LinearEchoEstimate()) {
|
|
RTC_DCHECK(aec_state.FilterDelay());
|
|
const int filter_delay = *aec_state.FilterDelay();
|
|
LinearEstimate(S2_linear, aec_state.Erle(), filter_delay, R2);
|
|
AddEchoReverb(S2_linear, aec_state.SaturatedEcho(), filter_delay,
|
|
aec_state.ReverbDecay(), R2);
|
|
|
|
// If the echo is saturated, estimate the echo power as the maximum echo
|
|
// power with a leakage factor.
|
|
if (aec_state.SaturatedEcho()) {
|
|
R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f);
|
|
}
|
|
} else {
|
|
// Estimate the echo generating signal power.
|
|
std::array<float, kFftLengthBy2Plus1> X2;
|
|
EchoGeneratingPower(render_buffer, 0, kUnknownDelayRenderWindowSize - 1,
|
|
&X2);
|
|
|
|
// Subtract the stationary noise power to avoid stationary noise causing
|
|
// excessive echo suppression.
|
|
if (!(aec_state.SaturatedEcho() || aec_state.SaturatingEchoPath())) {
|
|
std::transform(
|
|
X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(),
|
|
[](float a, float b) { return std::max(0.f, a - 10.f * b); });
|
|
}
|
|
|
|
NonLinearEstimate(
|
|
aec_state.SufficientFilterUpdates(),
|
|
aec_state.SaturatedEcho() && aec_state.SaturatingEchoPath(),
|
|
config_.ep_strength.bounded_erl, aec_state.TransparentMode(),
|
|
aec_state.InitialState(), X2, Y2, R2);
|
|
}
|
|
|
|
// If the echo is deemed inaudible, set the residual echo to zero.
|
|
if (aec_state.InaudibleEcho() &&
|
|
(!(aec_state.SaturatedEcho() || aec_state.SaturatingEchoPath()))) {
|
|
R2->fill(0.f);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
}
|
|
|
|
std::copy(R2->begin(), R2->end(), R2_old_.begin());
|
|
}
|
|
|
|
void ResidualEchoEstimator::Reset() {
|
|
X2_noise_floor_counter_.fill(kNoiseFloorCounterMax);
|
|
X2_noise_floor_.fill(kNoiseFloorMin);
|
|
R2_reverb_.fill(0.f);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
for (auto& S2_k : S2_old_) {
|
|
S2_k.fill(0.f);
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::LinearEstimate(
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& erle,
|
|
size_t delay,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f);
|
|
std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
|
|
[](float a, float b) {
|
|
RTC_DCHECK_LT(0.f, a);
|
|
return b / a;
|
|
});
|
|
}
|
|
|
|
void ResidualEchoEstimator::NonLinearEstimate(
|
|
bool sufficient_filter_updates,
|
|
bool saturated_echo,
|
|
bool bounded_erl,
|
|
bool transparent_mode,
|
|
bool initial_state,
|
|
const std::array<float, kFftLengthBy2Plus1>& X2,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
float echo_path_gain_lf;
|
|
float echo_path_gain_mf;
|
|
float echo_path_gain_hf;
|
|
|
|
// Set echo path gains.
|
|
if (saturated_echo) {
|
|
// If the echo could be saturated, use a very conservative gain.
|
|
echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 1000.f;
|
|
} else if (sufficient_filter_updates && !bounded_erl) {
|
|
// If the filter should have been able to converge, and no assumption is
|
|
// possible on the ERL, use a low gain.
|
|
echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 0.01f;
|
|
} else if ((sufficient_filter_updates && bounded_erl) || transparent_mode) {
|
|
// If the filter should have been able to converge, and and it is known that
|
|
// the ERL is bounded, use a very low gain.
|
|
echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 0.001f;
|
|
} else if (!initial_state) {
|
|
// If the AEC is no longer in an initial state, assume a weak echo path.
|
|
echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 0.01f;
|
|
} else {
|
|
// In the initial state, use conservative gains.
|
|
echo_path_gain_lf = config_.ep_strength.lf;
|
|
echo_path_gain_mf = config_.ep_strength.mf;
|
|
echo_path_gain_hf = config_.ep_strength.hf;
|
|
}
|
|
|
|
// Compute preliminary residual echo.
|
|
std::transform(
|
|
X2.begin(), X2.begin() + 12, R2->begin(),
|
|
[echo_path_gain_lf](float a) { return a * echo_path_gain_lf; });
|
|
std::transform(
|
|
X2.begin() + 12, X2.begin() + 25, R2->begin() + 12,
|
|
[echo_path_gain_mf](float a) { return a * echo_path_gain_mf; });
|
|
std::transform(
|
|
X2.begin() + 25, X2.end(), R2->begin() + 25,
|
|
[echo_path_gain_hf](float a) { return a * echo_path_gain_hf; });
|
|
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
// Update hold counter.
|
|
R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1;
|
|
|
|
// Compute the residual echo by holding a maximum echo powers and an echo
|
|
// fading corresponding to a room with an RT60 value of about 50 ms.
|
|
(*R2)[k] = R2_hold_counter_[k] < 2
|
|
? std::max((*R2)[k], R2_old_[k])
|
|
: std::min((*R2)[k] + R2_old_[k] * 0.1f, Y2[k]);
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::AddEchoReverb(
|
|
const std::array<float, kFftLengthBy2Plus1>& S2,
|
|
bool saturated_echo,
|
|
size_t delay,
|
|
float reverb_decay_factor,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
// Compute the decay factor for how much the echo has decayed before leaving
|
|
// the region covered by the linear model.
|
|
auto integer_power = [](float base, int exp) {
|
|
float result = 1.f;
|
|
for (int k = 0; k < exp; ++k) {
|
|
result *= base;
|
|
}
|
|
return result;
|
|
};
|
|
RTC_DCHECK_LE(delay, S2_old_.size());
|
|
const float reverb_decay_for_delay =
|
|
integer_power(reverb_decay_factor, S2_old_.size() - delay);
|
|
|
|
// Update the estimate of the reverberant residual echo power.
|
|
S2_old_index_ = S2_old_index_ > 0 ? S2_old_index_ - 1 : S2_old_.size() - 1;
|
|
const auto& S2_end = S2_old_[S2_old_index_];
|
|
std::transform(
|
|
S2_end.begin(), S2_end.end(), R2_reverb_.begin(), R2_reverb_.begin(),
|
|
[reverb_decay_for_delay, reverb_decay_factor](float a, float b) {
|
|
return (b + a * reverb_decay_for_delay) * reverb_decay_factor;
|
|
});
|
|
|
|
// Update the buffer of old echo powers.
|
|
if (saturated_echo) {
|
|
S2_old_[S2_old_index_].fill((*std::max_element(S2.begin(), S2.end())) *
|
|
100.f);
|
|
} else {
|
|
std::copy(S2.begin(), S2.end(), S2_old_[S2_old_index_].begin());
|
|
}
|
|
|
|
// Add the power of the echo reverb to the residual echo power.
|
|
std::transform(R2->begin(), R2->end(), R2_reverb_.begin(), R2->begin(),
|
|
std::plus<float>());
|
|
}
|
|
|
|
} // namespace webrtc
|