kwiberg 4485ffb58d #include "webrtc/base/constructormagic.h" where appropriate
Any file that uses the RTC_DISALLOW_* macros should #include
"webrtc/base/constructormagic.h", but a shocking number of them don't.
This causes trouble when we try to wean files off of #including
scoped_ptr.h, since a bunch of files get their constructormagic macros
only from there.

Rather than fixing these errors one by one as they turn up, this CL
simply ensures that every file in the WebRTC tree that uses the
RTC_DISALLOW_* macros #includes "webrtc/base/constructormagic.h".

BUG=webrtc:5520

Review URL: https://codereview.webrtc.org/1917043005

Cr-Commit-Position: refs/heads/master@{#12509}
2016-04-26 15:14:48 +00:00

453 lines
16 KiB
C++

/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test.h"
#include "webrtc/modules/remote_bitrate_estimator/test/packet_receiver.h"
#include "webrtc/modules/remote_bitrate_estimator/test/packet_sender.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
namespace testing {
namespace bwe {
#if BWE_TEST_LOGGING_COMPILE_TIME_ENABLE
// This test fixture is used to instantiate tests running with adaptive video
// senders.
class BweSimulation : public BweTest,
public ::testing::TestWithParam<BandwidthEstimatorType> {
public:
BweSimulation()
: BweTest(), random_(Clock::GetRealTimeClock()->TimeInMicroseconds()) {}
virtual ~BweSimulation() {}
protected:
void SetUp() override {
BweTest::SetUp();
VerboseLogging(true);
}
Random random_;
private:
RTC_DISALLOW_COPY_AND_ASSIGN(BweSimulation);
};
INSTANTIATE_TEST_CASE_P(VideoSendersTest,
BweSimulation,
::testing::Values(kRembEstimator,
kFullSendSideEstimator,
kNadaEstimator));
TEST_P(BweSimulation, SprintUplinkTest) {
AdaptiveVideoSource source(0, 30, 300, 0, 0);
VideoSender sender(&uplink_, &source, GetParam());
RateCounterFilter counter1(&uplink_, 0, "sender_output",
bwe_names[GetParam()]);
TraceBasedDeliveryFilter filter(&uplink_, 0, "link_capacity");
RateCounterFilter counter2(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
ASSERT_TRUE(filter.Init(test::ResourcePath("sprint-uplink", "rx")));
RunFor(60 * 1000);
}
TEST_P(BweSimulation, Verizon4gDownlinkTest) {
AdaptiveVideoSource source(0, 30, 300, 0, 0);
VideoSender sender(&downlink_, &source, GetParam());
RateCounterFilter counter1(&downlink_, 0, "sender_output",
bwe_names[GetParam()] + "_up");
TraceBasedDeliveryFilter filter(&downlink_, 0, "link_capacity");
RateCounterFilter counter2(&downlink_, 0, "Receiver",
bwe_names[GetParam()] + "_down");
PacketReceiver receiver(&downlink_, 0, GetParam(), true, true);
ASSERT_TRUE(filter.Init(test::ResourcePath("verizon4g-downlink", "rx")));
RunFor(22 * 60 * 1000);
}
TEST_P(BweSimulation, Choke1000kbps500kbps1000kbpsBiDirectional) {
const int kFlowIds[] = {0, 1};
const size_t kNumFlows = sizeof(kFlowIds) / sizeof(kFlowIds[0]);
AdaptiveVideoSource source(kFlowIds[0], 30, 300, 0, 0);
VideoSender sender(&uplink_, &source, GetParam());
ChokeFilter choke(&uplink_, kFlowIds[0]);
RateCounterFilter counter(&uplink_, kFlowIds[0], "Receiver_0",
bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, kFlowIds[0], GetParam(), true, false);
AdaptiveVideoSource source2(kFlowIds[1], 30, 300, 0, 0);
VideoSender sender2(&downlink_, &source2, GetParam());
ChokeFilter choke2(&downlink_, kFlowIds[1]);
DelayFilter delay(&downlink_, CreateFlowIds(kFlowIds, kNumFlows));
RateCounterFilter counter2(&downlink_, kFlowIds[1], "Receiver_1",
bwe_names[GetParam()]);
PacketReceiver receiver2(&downlink_, kFlowIds[1], GetParam(), true, false);
choke2.set_capacity_kbps(500);
delay.SetOneWayDelayMs(0);
choke.set_capacity_kbps(1000);
choke.set_max_delay_ms(500);
RunFor(60 * 1000);
choke.set_capacity_kbps(500);
RunFor(60 * 1000);
choke.set_capacity_kbps(1000);
RunFor(60 * 1000);
}
TEST_P(BweSimulation, Choke1000kbps500kbps1000kbps) {
AdaptiveVideoSource source(0, 30, 300, 0, 0);
VideoSender sender(&uplink_, &source, GetParam());
ChokeFilter choke(&uplink_, 0);
RateCounterFilter counter(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, false);
choke.set_capacity_kbps(1000);
choke.set_max_delay_ms(500);
RunFor(60 * 1000);
choke.set_capacity_kbps(500);
RunFor(60 * 1000);
choke.set_capacity_kbps(1000);
RunFor(60 * 1000);
}
TEST_P(BweSimulation, PacerChoke1000kbps500kbps1000kbps) {
AdaptiveVideoSource source(0, 30, 300, 0, 0);
PacedVideoSender sender(&uplink_, &source, GetParam());
ChokeFilter filter(&uplink_, 0);
RateCounterFilter counter(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
filter.set_capacity_kbps(1000);
filter.set_max_delay_ms(500);
RunFor(60 * 1000);
filter.set_capacity_kbps(500);
RunFor(60 * 1000);
filter.set_capacity_kbps(1000);
RunFor(60 * 1000);
}
TEST_P(BweSimulation, PacerChoke10000kbps) {
PeriodicKeyFrameSource source(0, 30, 300, 0, 0, 1000);
PacedVideoSender sender(&uplink_, &source, GetParam());
ChokeFilter filter(&uplink_, 0);
RateCounterFilter counter(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
filter.set_capacity_kbps(10000);
filter.set_max_delay_ms(500);
RunFor(60 * 1000);
}
TEST_P(BweSimulation, PacerChoke200kbps30kbps200kbps) {
AdaptiveVideoSource source(0, 30, 300, 0, 0);
PacedVideoSender sender(&uplink_, &source, GetParam());
ChokeFilter filter(&uplink_, 0);
RateCounterFilter counter(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
filter.set_capacity_kbps(200);
filter.set_max_delay_ms(500);
RunFor(60 * 1000);
filter.set_capacity_kbps(30);
RunFor(60 * 1000);
filter.set_capacity_kbps(200);
RunFor(60 * 1000);
}
TEST_P(BweSimulation, Choke200kbps30kbps200kbps) {
AdaptiveVideoSource source(0, 30, 300, 0, 0);
VideoSender sender(&uplink_, &source, GetParam());
ChokeFilter filter(&uplink_, 0);
RateCounterFilter counter(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
filter.set_capacity_kbps(200);
filter.set_max_delay_ms(500);
RunFor(60 * 1000);
filter.set_capacity_kbps(30);
RunFor(60 * 1000);
filter.set_capacity_kbps(200);
RunFor(60 * 1000);
}
TEST_P(BweSimulation, GoogleWifiTrace3Mbps) {
AdaptiveVideoSource source(0, 30, 300, 0, 0);
VideoSender sender(&uplink_, &source, GetParam());
RateCounterFilter counter1(&uplink_, 0, "sender_output",
bwe_names[GetParam()]);
TraceBasedDeliveryFilter filter(&uplink_, 0, "link_capacity");
filter.set_max_delay_ms(500);
RateCounterFilter counter2(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
ASSERT_TRUE(filter.Init(test::ResourcePath("google-wifi-3mbps", "rx")));
RunFor(300 * 1000);
}
TEST_P(BweSimulation, LinearIncreasingCapacity) {
PeriodicKeyFrameSource source(0, 30, 300, 0, 0, 1000000);
PacedVideoSender sender(&uplink_, &source, GetParam());
ChokeFilter filter(&uplink_, 0);
RateCounterFilter counter(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
filter.set_max_delay_ms(500);
const int kStartingCapacityKbps = 150;
const int kEndingCapacityKbps = 1500;
const int kStepKbps = 5;
const int kStepTimeMs = 1000;
for (int i = kStartingCapacityKbps; i <= kEndingCapacityKbps;
i += kStepKbps) {
filter.set_capacity_kbps(i);
RunFor(kStepTimeMs);
}
}
TEST_P(BweSimulation, LinearDecreasingCapacity) {
PeriodicKeyFrameSource source(0, 30, 300, 0, 0, 1000000);
PacedVideoSender sender(&uplink_, &source, GetParam());
ChokeFilter filter(&uplink_, 0);
RateCounterFilter counter(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
filter.set_max_delay_ms(500);
const int kStartingCapacityKbps = 1500;
const int kEndingCapacityKbps = 150;
const int kStepKbps = -5;
const int kStepTimeMs = 1000;
for (int i = kStartingCapacityKbps; i >= kEndingCapacityKbps;
i += kStepKbps) {
filter.set_capacity_kbps(i);
RunFor(kStepTimeMs);
}
}
TEST_P(BweSimulation, PacerGoogleWifiTrace3Mbps) {
PeriodicKeyFrameSource source(0, 30, 300, 0, 0, 1000);
PacedVideoSender sender(&uplink_, &source, GetParam());
RateCounterFilter counter1(&uplink_, 0, "sender_output",
bwe_names[GetParam()]);
TraceBasedDeliveryFilter filter(&uplink_, 0, "link_capacity");
filter.set_max_delay_ms(500);
RateCounterFilter counter2(&uplink_, 0, "Receiver", bwe_names[GetParam()]);
PacketReceiver receiver(&uplink_, 0, GetParam(), true, true);
ASSERT_TRUE(filter.Init(test::ResourcePath("google-wifi-3mbps", "rx")));
RunFor(300 * 1000);
}
TEST_P(BweSimulation, SelfFairnessTest) {
Random prng(Clock::GetRealTimeClock()->TimeInMicroseconds());
const int kAllFlowIds[] = {0, 1, 2, 3};
const size_t kNumFlows = sizeof(kAllFlowIds) / sizeof(kAllFlowIds[0]);
std::unique_ptr<VideoSource> sources[kNumFlows];
std::unique_ptr<VideoSender> senders[kNumFlows];
for (size_t i = 0; i < kNumFlows; ++i) {
// Streams started 20 seconds apart to give them different advantage when
// competing for the bandwidth.
sources[i].reset(new AdaptiveVideoSource(kAllFlowIds[i], 30, 300, 0,
i * prng.Rand(39999)));
senders[i].reset(new VideoSender(&uplink_, sources[i].get(), GetParam()));
}
ChokeFilter choke(&uplink_, CreateFlowIds(kAllFlowIds, kNumFlows));
choke.set_capacity_kbps(1000);
std::unique_ptr<RateCounterFilter> rate_counters[kNumFlows];
for (size_t i = 0; i < kNumFlows; ++i) {
rate_counters[i].reset(
new RateCounterFilter(&uplink_, CreateFlowIds(&kAllFlowIds[i], 1),
"Receiver", bwe_names[GetParam()]));
}
RateCounterFilter total_utilization(
&uplink_, CreateFlowIds(kAllFlowIds, kNumFlows), "total_utilization",
"Total_link_utilization");
std::unique_ptr<PacketReceiver> receivers[kNumFlows];
for (size_t i = 0; i < kNumFlows; ++i) {
receivers[i].reset(new PacketReceiver(&uplink_, kAllFlowIds[i], GetParam(),
i == 0, false));
}
RunFor(30 * 60 * 1000);
}
TEST_P(BweSimulation, PacedSelfFairness50msTest) {
const int64_t kAverageOffsetMs = 20 * 1000;
const int kNumRmcatFlows = 4;
int64_t offsets_ms[kNumRmcatFlows];
offsets_ms[0] = random_.Rand(2 * kAverageOffsetMs);
for (int i = 1; i < kNumRmcatFlows; ++i) {
offsets_ms[i] = offsets_ms[i - 1] + random_.Rand(2 * kAverageOffsetMs);
}
RunFairnessTest(GetParam(), kNumRmcatFlows, 0, 1000, 3000, 50, 50, 0,
offsets_ms);
}
TEST_P(BweSimulation, PacedSelfFairness500msTest) {
const int64_t kAverageOffsetMs = 20 * 1000;
const int kNumRmcatFlows = 4;
int64_t offsets_ms[kNumRmcatFlows];
offsets_ms[0] = random_.Rand(2 * kAverageOffsetMs);
for (int i = 1; i < kNumRmcatFlows; ++i) {
offsets_ms[i] = offsets_ms[i - 1] + random_.Rand(2 * kAverageOffsetMs);
}
RunFairnessTest(GetParam(), kNumRmcatFlows, 0, 1000, 3000, 500, 50, 0,
offsets_ms);
}
TEST_P(BweSimulation, PacedSelfFairness1000msTest) {
const int64_t kAverageOffsetMs = 20 * 1000;
const int kNumRmcatFlows = 4;
int64_t offsets_ms[kNumRmcatFlows];
offsets_ms[0] = random_.Rand(2 * kAverageOffsetMs);
for (int i = 1; i < kNumRmcatFlows; ++i) {
offsets_ms[i] = offsets_ms[i - 1] + random_.Rand(2 * kAverageOffsetMs);
}
RunFairnessTest(GetParam(), 4, 0, 1000, 3000, 1000, 50, 0, offsets_ms);
}
TEST_P(BweSimulation, TcpFairness50msTest) {
const int64_t kAverageOffsetMs = 20 * 1000;
int64_t offset_ms[] = {random_.Rand(2 * kAverageOffsetMs), 0};
RunFairnessTest(GetParam(), 1, 1, 1000, 2000, 50, 50, 0, offset_ms);
}
TEST_P(BweSimulation, TcpFairness500msTest) {
const int64_t kAverageOffsetMs = 20 * 1000;
int64_t offset_ms[] = {random_.Rand(2 * kAverageOffsetMs), 0};
RunFairnessTest(GetParam(), 1, 1, 1000, 2000, 500, 50, 0, offset_ms);
}
TEST_P(BweSimulation, TcpFairness1000msTest) {
const int kAverageOffsetMs = 20 * 1000;
int64_t offset_ms[] = {random_.Rand(2 * kAverageOffsetMs), 0};
RunFairnessTest(GetParam(), 1, 1, 1000, 2000, 1000, 50, 0, offset_ms);
}
// The following test cases begin with "Evaluation" as a referrence to the
// Internet draft https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-01.
TEST_P(BweSimulation, Evaluation1) {
RunVariableCapacity1SingleFlow(GetParam());
}
TEST_P(BweSimulation, Evaluation2) {
const size_t kNumFlows = 2;
RunVariableCapacity2MultipleFlows(GetParam(), kNumFlows);
}
TEST_P(BweSimulation, Evaluation3) {
RunBidirectionalFlow(GetParam());
}
TEST_P(BweSimulation, Evaluation4) {
RunSelfFairness(GetParam());
}
TEST_P(BweSimulation, Evaluation5) {
RunRoundTripTimeFairness(GetParam());
}
TEST_P(BweSimulation, Evaluation6) {
RunLongTcpFairness(GetParam());
}
// Different calls to the Evaluation7 will create the same FileSizes
// and StartingTimes as long as the seeds remain unchanged. This is essential
// when calling it with multiple estimators for comparison purposes.
TEST_P(BweSimulation, Evaluation7) {
const int kNumTcpFiles = 10;
RunMultipleShortTcpFairness(GetParam(),
BweTest::GetFileSizesBytes(kNumTcpFiles),
BweTest::GetStartingTimesMs(kNumTcpFiles));
}
TEST_P(BweSimulation, Evaluation8) {
RunPauseResumeFlows(GetParam());
}
// Following test cases begin with "GccComparison" run the
// evaluation test cases for both GCC and other calling RMCAT.
TEST_P(BweSimulation, GccComparison1) {
RunVariableCapacity1SingleFlow(GetParam());
BweTest gcc_test(false);
gcc_test.RunVariableCapacity1SingleFlow(kFullSendSideEstimator);
}
TEST_P(BweSimulation, GccComparison2) {
const size_t kNumFlows = 2;
RunVariableCapacity2MultipleFlows(GetParam(), kNumFlows);
BweTest gcc_test(false);
gcc_test.RunVariableCapacity2MultipleFlows(kFullSendSideEstimator, kNumFlows);
}
TEST_P(BweSimulation, GccComparison3) {
RunBidirectionalFlow(GetParam());
BweTest gcc_test(false);
gcc_test.RunBidirectionalFlow(kFullSendSideEstimator);
}
TEST_P(BweSimulation, GccComparison4) {
RunSelfFairness(GetParam());
BweTest gcc_test(false);
gcc_test.RunSelfFairness(GetParam());
}
TEST_P(BweSimulation, GccComparison5) {
RunRoundTripTimeFairness(GetParam());
BweTest gcc_test(false);
gcc_test.RunRoundTripTimeFairness(kFullSendSideEstimator);
}
TEST_P(BweSimulation, GccComparison6) {
RunLongTcpFairness(GetParam());
BweTest gcc_test(false);
gcc_test.RunLongTcpFairness(kFullSendSideEstimator);
}
TEST_P(BweSimulation, GccComparison7) {
const int kNumTcpFiles = 10;
std::vector<int> tcp_file_sizes_bytes =
BweTest::GetFileSizesBytes(kNumTcpFiles);
std::vector<int64_t> tcp_starting_times_ms =
BweTest::GetStartingTimesMs(kNumTcpFiles);
RunMultipleShortTcpFairness(GetParam(), tcp_file_sizes_bytes,
tcp_starting_times_ms);
BweTest gcc_test(false);
gcc_test.RunMultipleShortTcpFairness(
kFullSendSideEstimator, tcp_file_sizes_bytes, tcp_starting_times_ms);
}
TEST_P(BweSimulation, GccComparison8) {
RunPauseResumeFlows(GetParam());
BweTest gcc_test(false);
gcc_test.RunPauseResumeFlows(kFullSendSideEstimator);
}
TEST_P(BweSimulation, GccComparisonChoke) {
int array[] = {1000, 500, 1000};
std::vector<int> capacities_kbps(array, array + 3);
RunChoke(GetParam(), capacities_kbps);
BweTest gcc_test(false);
gcc_test.RunChoke(kFullSendSideEstimator, capacities_kbps);
}
#endif // BWE_TEST_LOGGING_COMPILE_TIME_ENABLE
} // namespace bwe
} // namespace testing
} // namespace webrtc