Also adds a copy of the BWE test suite to the new DelayBasedBwe class. BUG=webrtc:6079 Review-Url: https://codereview.webrtc.org/2126793002 Cr-Commit-Position: refs/heads/master@{#13428}
258 lines
8.4 KiB
C++
258 lines
8.4 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "webrtc/base/constructormagic.h"
|
|
#include "webrtc/modules/pacing/paced_sender.h"
|
|
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
|
|
#include "webrtc/modules/congestion_controller/delay_based_bwe_unittest_helper.h"
|
|
#include "webrtc/system_wrappers/include/clock.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
constexpr int kNumProbes = 5;
|
|
} // namespace
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetection) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
uint16_t seq_num = 0;
|
|
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps.
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0);
|
|
}
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
|
|
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 1);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
EXPECT_GT(bitrate_observer_->latest_bitrate(), 1500000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
uint16_t seq_num = 0;
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
|
|
// not being paced which could mess things up.
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0);
|
|
// Non-paced packet, arriving 5 ms after.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
IncomingFeedback(now_ms, now_ms, seq_num++,
|
|
PacedSender::kMinProbePacketSize + 1,
|
|
PacketInfo::kNotAProbe);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u);
|
|
}
|
|
|
|
// Packets will require 5 ms to be transmitted to the receiver, causing packets
|
|
// of the second probe to be dispersed.
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionTooHighBitrate) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
int64_t send_time_ms = 0;
|
|
uint16_t seq_num = 0;
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps.
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
send_time_ms += 10;
|
|
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 0);
|
|
}
|
|
|
|
// Second burst sent at 8 * 1000 / 5 = 1600 kbps, arriving at 8 * 1000 / 8 =
|
|
// 1000 kbps.
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(8);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
send_time_ms += 5;
|
|
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionSlightlyFasterArrival) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
uint16_t seq_num = 0;
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps.
|
|
// Arriving at 8 * 1000 / 5 = 1600 kbps.
|
|
int64_t send_time_ms = 0;
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_time_ms += 10;
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 23);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
uint16_t seq_num = 0;
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps.
|
|
// Arriving at 8 * 1000 / 5 = 1600 kbps.
|
|
int64_t send_time_ms = 0;
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(1);
|
|
send_time_ms += 10;
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 0);
|
|
}
|
|
|
|
EXPECT_FALSE(bitrate_observer_->updated());
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
uint16_t seq_num = 0;
|
|
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
|
|
// Arriving at 8 * 1000 / 7 = 1142 kbps.
|
|
int64_t send_time_ms = 0;
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(7);
|
|
send_time_ms += 5;
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 1140000u, 10000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
uint16_t seq_num = 0;
|
|
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
|
|
// Arriving at 8 * 1000 / 2 = 4000 kbps.
|
|
int64_t send_time_ms = 0;
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(2);
|
|
send_time_ms += 1;
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 4000000u, 10000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbingIgnoresSmallPackets) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
uint16_t seq_num = 0;
|
|
// Probing with 200 bytes every 10 ms, should be ignored by the probe
|
|
// detection.
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, seq_num++,
|
|
PacedSender::kMinProbePacketSize, 1);
|
|
}
|
|
|
|
EXPECT_FALSE(bitrate_observer_->updated());
|
|
|
|
// Followed by a probe with 1000 bytes packets, should be detected as a
|
|
// probe.
|
|
for (int i = 0; i < kNumProbes; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 1);
|
|
}
|
|
|
|
// Wait long enough so that we can call Process again.
|
|
clock_.AdvanceTimeMilliseconds(1000);
|
|
|
|
EXPECT_TRUE(bitrate_observer_->updated());
|
|
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, InitialBehavior) {
|
|
InitialBehaviorTestHelper(674840);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, RateIncreaseReordering) {
|
|
RateIncreaseReorderingTestHelper(674840);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) {
|
|
RateIncreaseRtpTimestampsTestHelper(1240);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropOneStream) {
|
|
CapacityDropTestHelper(1, false, 633, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) {
|
|
CapacityDropTestHelper(1, false, 200, 30000);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) {
|
|
CapacityDropTestHelper(1, false, 733, -30000);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) {
|
|
CapacityDropTestHelper(1, true, 633, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropTwoStreamsWrap) {
|
|
CapacityDropTestHelper(2, true, 567, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropThreeStreamsWrap) {
|
|
CapacityDropTestHelper(3, true, 633, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropThirteenStreamsWrap) {
|
|
CapacityDropTestHelper(13, true, 733, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropNineteenStreamsWrap) {
|
|
CapacityDropTestHelper(19, true, 667, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropThirtyStreamsWrap) {
|
|
CapacityDropTestHelper(30, true, 667, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestTimestampGrouping) {
|
|
TestTimestampGroupingTestHelper();
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) {
|
|
// Simulate a client leaving and rejoining the call after 35 seconds. This
|
|
// will make abs send time wrap, so if streams aren't timed out properly
|
|
// the next 30 seconds of packets will be out of order.
|
|
TestWrappingHelper(35);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) {
|
|
// Simulate a client leaving and rejoining the call after some multiple of
|
|
// 64 seconds later. This will cause a zero difference in abs send times due
|
|
// to the wrap, but a big difference in arrival time, if streams aren't
|
|
// properly timed out.
|
|
TestWrappingHelper(10 * 64);
|
|
}
|
|
} // namespace webrtc
|