webrtc_m130/webrtc/base/timeutils.h
deadbeef f83a94a41e Revert of Improving the fake clock and using it to fix a flaky STUN timeout test. (patchset #10 id:180001 of https://codereview.webrtc.org/2024813004/ )
Reason for revert:
There seems to be a TSan warning that wasn't caught by the trybot: https://build.chromium.org/p/client.webrtc/builders/Linux%20Tsan%20v2/builds/6732/steps/peerconnection_unittests/logs/stdio

Apparently a thread is still alive even after destroying WebRTCSession. Need to think of a way to fix this, without adding a critical section around g_clock (since that would hurt performance).

Original issue's description:
> Improving the fake clock and using it to fix a flaky STUN timeout test.
>
> When the fake clock's time is advanced, it now ensures all pending
> queued messages have been dispatched. This allows us to write a
> "SIMULATED_WAIT" macro that ticks the simulated clock by milliseconds up
> until the target time.
>
> Useful in this case, where we know the STUN timeout should take a total
> of 9500ms, but it would be overly complex to write test code that waits
> for each individual timeout, ensures a STUN packet has been
> retransmited, etc.
>
> (The test described above *should* be written, but it belongs in
> p2ptransportchannel_unittest.cc, not webrtcsession_unittest.cc).
>
> Committed: https://crrev.com/ffbe0e17e2c9b7fe101023acf40574dc0c95631a
> Cr-Commit-Position: refs/heads/master@{#13043}

TBR=pthatcher@webrtc.org,tommi@webrtc.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true

Review-Url: https://codereview.webrtc.org/2038213002
Cr-Commit-Position: refs/heads/master@{#13045}
2016-06-03 23:05:30 +00:00

107 lines
3.3 KiB
C++

/*
* Copyright 2005 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_TIMEUTILS_H_
#define WEBRTC_BASE_TIMEUTILS_H_
#include <ctime>
#include <time.h>
#include "webrtc/base/basictypes.h"
namespace rtc {
static const int64_t kNumMillisecsPerSec = INT64_C(1000);
static const int64_t kNumMicrosecsPerSec = INT64_C(1000000);
static const int64_t kNumNanosecsPerSec = INT64_C(1000000000);
static const int64_t kNumMicrosecsPerMillisec =
kNumMicrosecsPerSec / kNumMillisecsPerSec;
static const int64_t kNumNanosecsPerMillisec =
kNumNanosecsPerSec / kNumMillisecsPerSec;
static const int64_t kNumNanosecsPerMicrosec =
kNumNanosecsPerSec / kNumMicrosecsPerSec;
// TODO(honghaiz): Define a type for the time value specifically.
class ClockInterface {
public:
virtual ~ClockInterface() {}
virtual uint64_t TimeNanos() const = 0;
};
// Sets the global source of time. This is useful mainly for unit tests.
//
// Does not transfer ownership of the clock.
// SetClock(nullptr) should be called before the ClockInterface is deleted.
//
// This method is not thread-safe; it should only be used when no other thread
// is running (for example, at the start/end of a unit test, or start/end of
// main()).
//
// TODO(deadbeef): Instead of having functions that access this global
// ClockInterface, we may want to pass the ClockInterface into everything
// that uses it, eliminating the need for a global variable and this function.
void SetClock(ClockInterface* clock);
// Returns the current time in milliseconds in 32 bits.
uint32_t Time32();
// Returns the current time in milliseconds in 64 bits.
int64_t TimeMillis();
// Deprecated. Do not use this in any new code.
inline int64_t Time() {
return TimeMillis();
}
// Returns the current time in microseconds.
uint64_t TimeMicros();
// Returns the current time in nanoseconds.
uint64_t TimeNanos();
// Returns a future timestamp, 'elapsed' milliseconds from now.
int64_t TimeAfter(int64_t elapsed);
// Number of milliseconds that would elapse between 'earlier' and 'later'
// timestamps. The value is negative if 'later' occurs before 'earlier'.
int64_t TimeDiff(int64_t later, int64_t earlier);
int32_t TimeDiff32(uint32_t later, uint32_t earlier);
// The number of milliseconds that have elapsed since 'earlier'.
inline int64_t TimeSince(int64_t earlier) {
return TimeMillis() - earlier;
}
// The number of milliseconds that will elapse between now and 'later'.
inline int64_t TimeUntil(uint64_t later) {
return later - TimeMillis();
}
class TimestampWrapAroundHandler {
public:
TimestampWrapAroundHandler();
int64_t Unwrap(uint32_t ts);
private:
uint32_t last_ts_;
int64_t num_wrap_;
};
// Convert from std::tm, which is relative to 1900-01-01 00:00 to number of
// seconds from 1970-01-01 00:00 ("epoch"). Don't return time_t since that
// is still 32 bits on many systems.
int64_t TmToSeconds(const std::tm& tm);
} // namespace rtc
#endif // WEBRTC_BASE_TIMEUTILS_H_