This doesn't change the behavior at all. The logic behind this is having one class which manages all the splitting filters, because in the future we plan to add a 3 band one for 48kHz support. It also breaks the dependency of the AudioBuffer with the filter states of these filters (which are going to be different for the 3 band one). The AudioBuffer is complicated enough and is going to need changes to support 3 bands in the future, so any simplification is a good idea. On top of that it eliminates repeated code in the APM (now only iterating over channels, but then also deciding in how many bands to split). This should be managed by the AudioBuffer directly. BUG=webrtc:3146 R=bjornv@webrtc.org, kwiberg@webrtc.org Review URL: https://webrtc-codereview.appspot.com/32469004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7705 4adac7df-926f-26a2-2b94-8c16560cd09d
528 lines
17 KiB
C++
528 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/audio_buffer.h"
|
|
|
|
#include "webrtc/common_audio/include/audio_util.h"
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
enum {
|
|
kSamplesPer8kHzChannel = 80,
|
|
kSamplesPer16kHzChannel = 160,
|
|
kSamplesPer32kHzChannel = 320
|
|
};
|
|
|
|
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
assert(false);
|
|
return -1;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
return 1;
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return 2;
|
|
}
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
template <typename T>
|
|
void StereoToMono(const T* left, const T* right, T* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i)
|
|
out[i] = (left[i] + right[i]) / 2;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// One int16_t and one float ChannelBuffer that are kept in sync. The sync is
|
|
// broken when someone requests write access to either ChannelBuffer, and
|
|
// reestablished when someone requests the outdated ChannelBuffer. It is
|
|
// therefore safe to use the return value of ibuf_const() and fbuf_const()
|
|
// until the next call to ibuf() or fbuf(), and the return value of ibuf() and
|
|
// fbuf() until the next call to any of the other functions.
|
|
class IFChannelBuffer {
|
|
public:
|
|
IFChannelBuffer(int samples_per_channel, int num_channels)
|
|
: ivalid_(true),
|
|
ibuf_(samples_per_channel, num_channels),
|
|
fvalid_(true),
|
|
fbuf_(samples_per_channel, num_channels) {}
|
|
|
|
ChannelBuffer<int16_t>* ibuf() { return ibuf(false); }
|
|
ChannelBuffer<float>* fbuf() { return fbuf(false); }
|
|
const ChannelBuffer<int16_t>* ibuf_const() { return ibuf(true); }
|
|
const ChannelBuffer<float>* fbuf_const() { return fbuf(true); }
|
|
|
|
private:
|
|
ChannelBuffer<int16_t>* ibuf(bool readonly) {
|
|
RefreshI();
|
|
fvalid_ = readonly;
|
|
return &ibuf_;
|
|
}
|
|
|
|
ChannelBuffer<float>* fbuf(bool readonly) {
|
|
RefreshF();
|
|
ivalid_ = readonly;
|
|
return &fbuf_;
|
|
}
|
|
|
|
void RefreshF() {
|
|
if (!fvalid_) {
|
|
assert(ivalid_);
|
|
const int16_t* const int_data = ibuf_.data();
|
|
float* const float_data = fbuf_.data();
|
|
const int length = fbuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
float_data[i] = int_data[i];
|
|
fvalid_ = true;
|
|
}
|
|
}
|
|
|
|
void RefreshI() {
|
|
if (!ivalid_) {
|
|
assert(fvalid_);
|
|
FloatS16ToS16(fbuf_.data(), ibuf_.length(), ibuf_.data());
|
|
ivalid_ = true;
|
|
}
|
|
}
|
|
|
|
bool ivalid_;
|
|
ChannelBuffer<int16_t> ibuf_;
|
|
bool fvalid_;
|
|
ChannelBuffer<float> fbuf_;
|
|
};
|
|
|
|
AudioBuffer::AudioBuffer(int input_samples_per_channel,
|
|
int num_input_channels,
|
|
int process_samples_per_channel,
|
|
int num_process_channels,
|
|
int output_samples_per_channel)
|
|
: input_samples_per_channel_(input_samples_per_channel),
|
|
num_input_channels_(num_input_channels),
|
|
proc_samples_per_channel_(process_samples_per_channel),
|
|
num_proc_channels_(num_process_channels),
|
|
output_samples_per_channel_(output_samples_per_channel),
|
|
samples_per_split_channel_(proc_samples_per_channel_),
|
|
mixed_low_pass_valid_(false),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
keyboard_data_(NULL),
|
|
channels_(new IFChannelBuffer(proc_samples_per_channel_,
|
|
num_proc_channels_)) {
|
|
assert(input_samples_per_channel_ > 0);
|
|
assert(proc_samples_per_channel_ > 0);
|
|
assert(output_samples_per_channel_ > 0);
|
|
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
|
|
assert(num_proc_channels_ <= num_input_channels);
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
|
|
output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Create an intermediate buffer for resampling.
|
|
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
input_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_.push_back(
|
|
new PushSincResampler(input_samples_per_channel_,
|
|
proc_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
output_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_.push_back(
|
|
new PushSincResampler(proc_samples_per_channel_,
|
|
output_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel) {
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
split_channels_low_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
split_channels_high_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
splitting_filter_.reset(new SplittingFilter(num_proc_channels_));
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout) {
|
|
assert(samples_per_channel == input_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_input_channels_);
|
|
InitForNewData();
|
|
|
|
if (HasKeyboardChannel(layout)) {
|
|
keyboard_data_ = data[KeyboardChannelIndex(layout)];
|
|
}
|
|
|
|
// Downmix.
|
|
const float* const* data_ptr = data;
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
StereoToMono(data[0],
|
|
data[1],
|
|
input_buffer_->channel(0),
|
|
input_samples_per_channel_);
|
|
data_ptr = input_buffer_->channels();
|
|
}
|
|
|
|
// Resample.
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data_ptr[i],
|
|
input_samples_per_channel_,
|
|
process_buffer_->channel(i),
|
|
proc_samples_per_channel_);
|
|
}
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
|
|
// Convert to the S16 range.
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
FloatToFloatS16(data_ptr[i], proc_samples_per_channel_,
|
|
channels_->fbuf()->channel(i));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout,
|
|
float* const* data) {
|
|
assert(samples_per_channel == output_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_proc_channels_);
|
|
|
|
// Convert to the float range.
|
|
float* const* data_ptr = data;
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Convert to an intermediate buffer for subsequent resampling.
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
FloatS16ToFloat(channels_->fbuf()->channel(i), proc_samples_per_channel_,
|
|
data_ptr[i]);
|
|
}
|
|
|
|
// Resample.
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_[i]->Resample(data_ptr[i],
|
|
proc_samples_per_channel_,
|
|
data[i],
|
|
output_samples_per_channel_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InitForNewData() {
|
|
keyboard_data_ = NULL;
|
|
mixed_low_pass_valid_ = false;
|
|
reference_copied_ = false;
|
|
activity_ = AudioFrame::kVadUnknown;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::data(int channel) const {
|
|
return channels_->ibuf_const()->channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->ibuf()->channel(channel);
|
|
}
|
|
|
|
const int16_t* const* AudioBuffer::channels() const {
|
|
return channels_->ibuf_const()->channels();
|
|
}
|
|
|
|
int16_t* const* AudioBuffer::channels() {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->ibuf()->channels();
|
|
}
|
|
|
|
const float* AudioBuffer::data_f(int channel) const {
|
|
return channels_->fbuf_const()->channel(channel);
|
|
}
|
|
|
|
float* AudioBuffer::data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->fbuf()->channel(channel);
|
|
}
|
|
|
|
const float* const* AudioBuffer::channels_f() const {
|
|
return channels_->fbuf_const()->channels();
|
|
}
|
|
|
|
float* const* AudioBuffer::channels_f() {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->fbuf()->channels();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_split_data(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf_const()->channel(channel)
|
|
: data(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_split_data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf()->channel(channel)
|
|
: data(channel);
|
|
}
|
|
|
|
const int16_t* const* AudioBuffer::low_pass_split_channels() const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf_const()->channels()
|
|
: channels();
|
|
}
|
|
|
|
int16_t* const* AudioBuffer::low_pass_split_channels() {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get() ? split_channels_low_->ibuf()->channels()
|
|
: channels();
|
|
}
|
|
|
|
const float* AudioBuffer::low_pass_split_data_f(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf_const()->channel(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
float* AudioBuffer::low_pass_split_data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf()->channel(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
const float* const* AudioBuffer::low_pass_split_channels_f() const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf_const()->channels()
|
|
: channels_f();
|
|
}
|
|
|
|
float* const* AudioBuffer::low_pass_split_channels_f() {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf()->channels()
|
|
: channels_f();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::high_pass_split_data(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf_const()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
int16_t* AudioBuffer::high_pass_split_data(int channel) {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
const int16_t* const* AudioBuffer::high_pass_split_channels() const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf_const()->channels()
|
|
: NULL;
|
|
}
|
|
|
|
int16_t* const* AudioBuffer::high_pass_split_channels() {
|
|
return split_channels_high_.get() ? split_channels_high_->ibuf()->channels()
|
|
: NULL;
|
|
}
|
|
|
|
const float* AudioBuffer::high_pass_split_data_f(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf_const()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
float* AudioBuffer::high_pass_split_data_f(int channel) {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
const float* const* AudioBuffer::high_pass_split_channels_f() const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf_const()->channels()
|
|
: NULL;
|
|
}
|
|
|
|
float* const* AudioBuffer::high_pass_split_channels_f() {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf()->channels()
|
|
: NULL;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_low_pass_data() {
|
|
// Currently only mixing stereo to mono is supported.
|
|
assert(num_proc_channels_ == 1 || num_proc_channels_ == 2);
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
return low_pass_split_data(0);
|
|
}
|
|
|
|
if (!mixed_low_pass_valid_) {
|
|
if (!mixed_low_pass_channels_.get()) {
|
|
mixed_low_pass_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_, 1));
|
|
}
|
|
StereoToMono(low_pass_split_data(0),
|
|
low_pass_split_data(1),
|
|
mixed_low_pass_channels_->data(),
|
|
samples_per_split_channel_);
|
|
mixed_low_pass_valid_ = true;
|
|
}
|
|
return mixed_low_pass_channels_->data();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::keyboard_data() const {
|
|
return keyboard_data_;
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_proc_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return proc_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_keyboard_channel() const {
|
|
// We don't resample the keyboard channel.
|
|
return input_samples_per_channel_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(proc_samples_per_channel_ == input_samples_per_channel_);
|
|
assert(frame->num_channels_ == num_input_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
InitForNewData();
|
|
activity_ = frame->vad_activity_;
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
// Downmix directly; no explicit deinterleaving needed.
|
|
int16_t* downmixed = channels_->ibuf()->channel(0);
|
|
for (int i = 0; i < input_samples_per_channel_; ++i) {
|
|
downmixed[i] = (frame->data_[i * 2] + frame->data_[i * 2 + 1]) / 2;
|
|
}
|
|
} else {
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; ++j) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(proc_samples_per_channel_ == output_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
if (!low_pass_reference_channels_.get()) {
|
|
low_pass_reference_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
low_pass_reference_channels_->CopyFrom(low_pass_split_data(i), i);
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::SplitIntoFrequencyBands() {
|
|
splitting_filter_->TwoBandsAnalysis(
|
|
channels(), samples_per_channel(), num_proc_channels_,
|
|
low_pass_split_channels(), high_pass_split_channels());
|
|
}
|
|
|
|
void AudioBuffer::MergeFrequencyBands() {
|
|
splitting_filter_->TwoBandsSynthesis(
|
|
low_pass_split_channels(), high_pass_split_channels(),
|
|
samples_per_split_channel(), num_proc_channels_, channels());
|
|
}
|
|
|
|
} // namespace webrtc
|