I discovered the hard way that Adobe Audition writes an 18 byte format header with an extra (zero) extension size field. Although: https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ indicates this field shouldn't exist for PCM, the documentation here: http://www-mmsp.ece.mcgill.ca/documents/AudioFormats/WAVE/WAVE.html doesn't list it as strictly forbidden, only that it _must_ exist for non-PCM formats. Audition can write metadata to the file after the audio data, which is also not forbidden. We now ensure to read only up to the audio payload length to avoid reading the metadata. R=aluebs@webrtc.org, kwiberg@webrtc.org Review URL: https://webrtc-codereview.appspot.com/33629004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7915 4adac7df-926f-26a2-2b94-8c16560cd09d
179 lines
6.5 KiB
C++
179 lines
6.5 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
// MSVC++ requires this to be set before any other includes to get M_PI.
|
|
#define _USE_MATH_DEFINES
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "webrtc/base/compile_assert.h"
|
|
#include "webrtc/common_audio/wav_header.h"
|
|
#include "webrtc/common_audio/wav_file.h"
|
|
#include "webrtc/test/testsupport/fileutils.h"
|
|
|
|
namespace webrtc {
|
|
|
|
static const float kSamples[] = {0.0, 10.0, 4e4, -1e9};
|
|
|
|
// Write a tiny WAV file with the C++ interface and verify the result.
|
|
TEST(WavWriterTest, CPP) {
|
|
const std::string outfile = test::OutputPath() + "wavtest1.wav";
|
|
static const uint32_t kNumSamples = 3;
|
|
{
|
|
WavWriter w(outfile, 14099, 1);
|
|
EXPECT_EQ(14099, w.sample_rate());
|
|
EXPECT_EQ(1, w.num_channels());
|
|
EXPECT_EQ(0u, w.num_samples());
|
|
w.WriteSamples(kSamples, kNumSamples);
|
|
EXPECT_EQ(kNumSamples, w.num_samples());
|
|
}
|
|
// Write some extra "metadata" to the file that should be silently ignored
|
|
// by WavReader. We don't use WavWriter directly for this because it doesn't
|
|
// support metadata.
|
|
static const uint8_t kMetadata[] = {101, 202};
|
|
{
|
|
FILE* f = fopen(outfile.c_str(), "ab");
|
|
ASSERT_TRUE(f);
|
|
ASSERT_EQ(1u, fwrite(kMetadata, sizeof(kMetadata), 1, f));
|
|
fclose(f);
|
|
}
|
|
static const uint8_t kExpectedContents[] = {
|
|
'R', 'I', 'F', 'F',
|
|
42, 0, 0, 0, // size of whole file - 8: 6 + 44 - 8
|
|
'W', 'A', 'V', 'E',
|
|
'f', 'm', 't', ' ',
|
|
16, 0, 0, 0, // size of fmt block - 8: 24 - 8
|
|
1, 0, // format: PCM (1)
|
|
1, 0, // channels: 1
|
|
0x13, 0x37, 0, 0, // sample rate: 14099
|
|
0x26, 0x6e, 0, 0, // byte rate: 2 * 14099
|
|
2, 0, // block align: NumChannels * BytesPerSample
|
|
16, 0, // bits per sample: 2 * 8
|
|
'd', 'a', 't', 'a',
|
|
6, 0, 0, 0, // size of payload: 6
|
|
0, 0, // first sample: 0.0
|
|
10, 0, // second sample: 10.0
|
|
0xff, 0x7f, // third sample: 4e4 (saturated)
|
|
kMetadata[0], kMetadata[1],
|
|
};
|
|
static const int kContentSize =
|
|
kWavHeaderSize + kNumSamples * sizeof(int16_t) + sizeof(kMetadata);
|
|
COMPILE_ASSERT(sizeof(kExpectedContents) == kContentSize, content_size);
|
|
EXPECT_EQ(size_t(kContentSize), test::GetFileSize(outfile));
|
|
FILE* f = fopen(outfile.c_str(), "rb");
|
|
ASSERT_TRUE(f);
|
|
uint8_t contents[kContentSize];
|
|
ASSERT_EQ(1u, fread(contents, kContentSize, 1, f));
|
|
EXPECT_EQ(0, fclose(f));
|
|
EXPECT_EQ(0, memcmp(kExpectedContents, contents, kContentSize));
|
|
|
|
{
|
|
WavReader r(outfile);
|
|
EXPECT_EQ(14099, r.sample_rate());
|
|
EXPECT_EQ(1, r.num_channels());
|
|
EXPECT_EQ(kNumSamples, r.num_samples());
|
|
static const float kTruncatedSamples[] = {0.0, 10.0, 32767.0};
|
|
float samples[kNumSamples];
|
|
EXPECT_EQ(kNumSamples, r.ReadSamples(kNumSamples, samples));
|
|
EXPECT_EQ(0, memcmp(kTruncatedSamples, samples, sizeof(samples)));
|
|
EXPECT_EQ(0u, r.ReadSamples(kNumSamples, samples));
|
|
}
|
|
}
|
|
|
|
// Write a tiny WAV file with the C interface and verify the result.
|
|
TEST(WavWriterTest, C) {
|
|
const std::string outfile = test::OutputPath() + "wavtest2.wav";
|
|
rtc_WavWriter* w = rtc_WavOpen(outfile.c_str(), 11904, 2);
|
|
EXPECT_EQ(11904, rtc_WavSampleRate(w));
|
|
EXPECT_EQ(2, rtc_WavNumChannels(w));
|
|
EXPECT_EQ(0u, rtc_WavNumSamples(w));
|
|
static const uint32_t kNumSamples = 4;
|
|
rtc_WavWriteSamples(w, &kSamples[0], 2);
|
|
EXPECT_EQ(2u, rtc_WavNumSamples(w));
|
|
rtc_WavWriteSamples(w, &kSamples[2], kNumSamples - 2);
|
|
EXPECT_EQ(kNumSamples, rtc_WavNumSamples(w));
|
|
rtc_WavClose(w);
|
|
static const uint8_t kExpectedContents[] = {
|
|
'R', 'I', 'F', 'F',
|
|
44, 0, 0, 0, // size of whole file - 8: 8 + 44 - 8
|
|
'W', 'A', 'V', 'E',
|
|
'f', 'm', 't', ' ',
|
|
16, 0, 0, 0, // size of fmt block - 8: 24 - 8
|
|
1, 0, // format: PCM (1)
|
|
2, 0, // channels: 2
|
|
0x80, 0x2e, 0, 0, // sample rate: 11904
|
|
0, 0xba, 0, 0, // byte rate: 2 * 2 * 11904
|
|
4, 0, // block align: NumChannels * BytesPerSample
|
|
16, 0, // bits per sample: 2 * 8
|
|
'd', 'a', 't', 'a',
|
|
8, 0, 0, 0, // size of payload: 8
|
|
0, 0, // first sample: 0.0
|
|
10, 0, // second sample: 10.0
|
|
0xff, 0x7f, // third sample: 4e4 (saturated)
|
|
0, 0x80, // fourth sample: -1e9 (saturated)
|
|
};
|
|
static const int kContentSize =
|
|
kWavHeaderSize + kNumSamples * sizeof(int16_t);
|
|
COMPILE_ASSERT(sizeof(kExpectedContents) == kContentSize, content_size);
|
|
EXPECT_EQ(size_t(kContentSize), test::GetFileSize(outfile));
|
|
FILE* f = fopen(outfile.c_str(), "rb");
|
|
ASSERT_TRUE(f);
|
|
uint8_t contents[kContentSize];
|
|
ASSERT_EQ(1u, fread(contents, kContentSize, 1, f));
|
|
EXPECT_EQ(0, fclose(f));
|
|
EXPECT_EQ(0, memcmp(kExpectedContents, contents, kContentSize));
|
|
}
|
|
|
|
// Write a larger WAV file. You can listen to this file to sanity-check it.
|
|
TEST(WavWriterTest, LargeFile) {
|
|
std::string outfile = test::OutputPath() + "wavtest3.wav";
|
|
static const int kSampleRate = 8000;
|
|
static const int kNumChannels = 2;
|
|
static const uint32_t kNumSamples = 3 * kSampleRate * kNumChannels;
|
|
float samples[kNumSamples];
|
|
for (uint32_t i = 0; i < kNumSamples; i += kNumChannels) {
|
|
// A nice periodic beeping sound.
|
|
static const double kToneHz = 440;
|
|
const double t = static_cast<double>(i) / (kNumChannels * kSampleRate);
|
|
const double x =
|
|
std::numeric_limits<int16_t>::max() * std::sin(t * kToneHz * 2 * M_PI);
|
|
samples[i] = std::pow(std::sin(t * 2 * 2 * M_PI), 10) * x;
|
|
samples[i + 1] = std::pow(std::cos(t * 2 * 2 * M_PI), 10) * x;
|
|
}
|
|
{
|
|
WavWriter w(outfile, kSampleRate, kNumChannels);
|
|
EXPECT_EQ(kSampleRate, w.sample_rate());
|
|
EXPECT_EQ(kNumChannels, w.num_channels());
|
|
EXPECT_EQ(0u, w.num_samples());
|
|
w.WriteSamples(samples, kNumSamples);
|
|
EXPECT_EQ(kNumSamples, w.num_samples());
|
|
}
|
|
EXPECT_EQ(sizeof(int16_t) * kNumSamples + kWavHeaderSize,
|
|
test::GetFileSize(outfile));
|
|
|
|
{
|
|
WavReader r(outfile);
|
|
EXPECT_EQ(kSampleRate, r.sample_rate());
|
|
EXPECT_EQ(kNumChannels, r.num_channels());
|
|
EXPECT_EQ(kNumSamples, r.num_samples());
|
|
|
|
float read_samples[kNumSamples];
|
|
EXPECT_EQ(kNumSamples, r.ReadSamples(kNumSamples, read_samples));
|
|
for (size_t i = 0; i < kNumSamples; ++i)
|
|
EXPECT_NEAR(samples[i], read_samples[i], 1);
|
|
|
|
EXPECT_EQ(0u, r.ReadSamples(kNumSamples, read_samples));
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|