webrtc_m130/modules/audio_processing/aec3/erle_estimator_unittest.cc
Gustaf Ullberg 437d129ef5 AEC3: Avoid overcompensating for render onsets during dominant nearend
The ERLE is used to estimate residual echo for echo suppression. The
ERLE is reduced during far-end offset to avoid echo leakage. When there
is a strong near-end present this can cause unnecessary transparency loss.

This change adds an ERLE estimation that does not compensate for onsets and
uses it for residual echo estimation when the suppressor considers the near-end to be dominant.

Bug: webrtc:12686
Change-Id: Ida78eeacf1f95c6e62403f86ba3f2ff055898a84
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215323
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33786}
2021-04-20 12:33:02 +00:00

273 lines
11 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/erle_estimator.h"
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/spectrum_buffer.h"
#include "rtc_base/random.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2;
constexpr float kTrueErle = 10.f;
constexpr float kTrueErleOnsets = 1.0f;
constexpr float kEchoPathGain = 3.f;
void VerifyErleBands(
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
float reference_lf,
float reference_hf) {
for (size_t ch = 0; ch < erle.size(); ++ch) {
std::for_each(
erle[ch].begin(), erle[ch].begin() + kLowFrequencyLimit,
[reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); });
std::for_each(
erle[ch].begin() + kLowFrequencyLimit, erle[ch].end(),
[reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); });
}
}
void VerifyErle(
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
float erle_time_domain,
float reference_lf,
float reference_hf) {
VerifyErleBands(erle, reference_lf, reference_hf);
EXPECT_NEAR(kTrueErle, erle_time_domain, 0.5);
}
void FormFarendTimeFrame(std::vector<std::vector<std::vector<float>>>* x) {
const std::array<float, kBlockSize> frame = {
7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85,
6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2,
7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89,
7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03,
9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6,
11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8,
1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4,
12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19};
for (size_t band = 0; band < x->size(); ++band) {
for (size_t channel = 0; channel < (*x)[band].size(); ++channel) {
RTC_DCHECK_GE((*x)[band][channel].size(), frame.size());
std::copy(frame.begin(), frame.end(), (*x)[band][channel].begin());
}
}
}
void FormFarendFrame(const RenderBuffer& render_buffer,
float erle,
std::array<float, kFftLengthBy2Plus1>* X2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer();
const int num_render_channels = spectrum_buffer.buffer[0].size();
const int num_capture_channels = Y2.size();
X2->fill(0.f);
for (int ch = 0; ch < num_render_channels; ++ch) {
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
(*X2)[k] += spectrum_buffer.buffer[spectrum_buffer.write][ch][k] /
num_render_channels;
}
}
for (int ch = 0; ch < num_capture_channels; ++ch) {
std::transform(X2->begin(), X2->end(), Y2[ch].begin(),
[](float a) { return a * kEchoPathGain * kEchoPathGain; });
std::transform(Y2[ch].begin(), Y2[ch].end(), E2[ch].begin(),
[erle](float a) { return a / erle; });
}
}
void FormNearendFrame(
std::vector<std::vector<std::vector<float>>>* x,
std::array<float, kFftLengthBy2Plus1>* X2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
for (size_t band = 0; band < x->size(); ++band) {
for (size_t ch = 0; ch < (*x)[band].size(); ++ch) {
std::fill((*x)[band][ch].begin(), (*x)[band][ch].end(), 0.f);
}
}
X2->fill(0.f);
for (size_t ch = 0; ch < Y2.size(); ++ch) {
Y2[ch].fill(500.f * 1000.f * 1000.f);
E2[ch].fill(Y2[ch][0]);
}
}
void GetFilterFreq(
size_t delay_headroom_samples,
rtc::ArrayView<std::vector<std::array<float, kFftLengthBy2Plus1>>>
filter_frequency_response) {
const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize;
for (size_t ch = 0; ch < filter_frequency_response[0].size(); ++ch) {
for (auto& block_freq_resp : filter_frequency_response) {
block_freq_resp[ch].fill(0.f);
}
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
filter_frequency_response[delay_headroom_blocks][ch][k] = kEchoPathGain;
}
}
}
} // namespace
class ErleEstimatorMultiChannel
: public ::testing::Test,
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
INSTANTIATE_TEST_SUITE_P(MultiChannel,
ErleEstimatorMultiChannel,
::testing::Combine(::testing::Values(1, 2, 4, 8),
::testing::Values(1, 2, 8)));
TEST_P(ErleEstimatorMultiChannel, VerifyErleIncreaseAndHold) {
const size_t num_render_channels = std::get<0>(GetParam());
const size_t num_capture_channels = std::get<1>(GetParam());
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
std::array<float, kFftLengthBy2Plus1> X2;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
std::vector<bool> converged_filters(num_capture_channels, true);
EchoCanceller3Config config;
config.erle.onset_detection = true;
std::vector<std::vector<std::vector<float>>> x(
kNumBands, std::vector<std::vector<float>>(
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
filter_frequency_response(
config.filter.refined.length_blocks,
std::vector<std::array<float, kFftLengthBy2Plus1>>(num_capture_channels));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
ErleEstimator estimator(0, config, num_capture_channels);
FormFarendTimeFrame(&x);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
// Verifies that the ERLE estimate is properly increased to higher values.
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
Y2);
for (size_t k = 0; k < 1000; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, converged_filters);
}
VerifyErle(estimator.Erle(/*onset_compensated=*/true),
std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l,
config.erle.max_h);
FormNearendFrame(&x, &X2, E2, Y2);
// Verifies that the ERLE is not immediately decreased during nearend
// activity.
for (size_t k = 0; k < 50; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, converged_filters);
}
VerifyErle(estimator.Erle(/*onset_compensated=*/true),
std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l,
config.erle.max_h);
}
TEST_P(ErleEstimatorMultiChannel, VerifyErleTrackingOnOnsets) {
const size_t num_render_channels = std::get<0>(GetParam());
const size_t num_capture_channels = std::get<1>(GetParam());
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
std::array<float, kFftLengthBy2Plus1> X2;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
std::vector<bool> converged_filters(num_capture_channels, true);
EchoCanceller3Config config;
config.erle.onset_detection = true;
std::vector<std::vector<std::vector<float>>> x(
kNumBands, std::vector<std::vector<float>>(
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
filter_frequency_response(
config.filter.refined.length_blocks,
std::vector<std::array<float, kFftLengthBy2Plus1>>(num_capture_channels));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
ErleEstimator estimator(/*startup_phase_length_blocks=*/0, config,
num_capture_channels);
FormFarendTimeFrame(&x);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
for (size_t burst = 0; burst < 20; ++burst) {
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErleOnsets,
&X2, E2, Y2);
for (size_t k = 0; k < 10; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
Y2);
for (size_t k = 0; k < 1000; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
FormNearendFrame(&x, &X2, E2, Y2);
for (size_t k = 0; k < 300; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
}
VerifyErleBands(estimator.ErleDuringOnsets(), config.erle.min,
config.erle.min);
FormNearendFrame(&x, &X2, E2, Y2);
for (size_t k = 0; k < 1000; k++) {
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, converged_filters);
}
// Verifies that during ne activity, Erle converges to the Erle for
// onsets.
VerifyErle(estimator.Erle(/*onset_compensated=*/true),
std::pow(2.f, estimator.FullbandErleLog2()), config.erle.min,
config.erle.min);
}
} // namespace webrtc