Per Åhgren 63b494dff7 Reverted the new handling of saturated echoes in AEC3
This CL reverts the changes introduced that handles echoes in AEC3.
The revert is done to match the behavior which is in M63.

Bug: webrtc:8615,chromium:792346
Change-Id: I128ccb17dc359c7889a701a2faaaf06be40f86dd
Reviewed-on: https://webrtc-review.googlesource.com/30140
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21117}
2017-12-06 11:04:22 +00:00

147 lines
5.1 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <numeric>
#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
void PredictionError(const Aec3Fft& fft,
const FftData& S,
rtc::ArrayView<const float> y,
std::array<float, kBlockSize>* e,
FftData* E,
std::array<float, kBlockSize>* s) {
std::array<float, kFftLength> s_scratch;
fft.Ifft(S, &s_scratch);
constexpr float kScale = 1.0f / kFftLengthBy2;
std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2,
e->begin(), [&](float a, float b) { return a - b * kScale; });
std::for_each(e->begin(), e->end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
fft.ZeroPaddedFft(*e, E);
if (s) {
for (size_t k = 0; k < s->size(); ++k) {
(*s)[k] = kScale * s_scratch[k + kFftLengthBy2];
}
}
}
} // namespace
Subtractor::Subtractor(ApmDataDumper* data_dumper,
Aec3Optimization optimization)
: fft_(),
data_dumper_(data_dumper),
optimization_(optimization),
main_filter_(kAdaptiveFilterLength, optimization, data_dumper_),
shadow_filter_(kAdaptiveFilterLength, optimization, data_dumper_) {
RTC_DCHECK(data_dumper_);
}
Subtractor::~Subtractor() = default;
void Subtractor::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
main_filter_.HandleEchoPathChange();
shadow_filter_.HandleEchoPathChange();
G_main_.HandleEchoPathChange(echo_path_variability);
G_shadow_.HandleEchoPathChange();
converged_filter_ = false;
};
// TODO(peah): Add delay-change specific reset behavior.
if ((echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kBufferFlush) ||
(echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kDelayReset)) {
full_reset();
} else if (echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kNewDetectedDelay) {
full_reset();
} else if (echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kBufferReadjustment) {
full_reset();
}
}
void Subtractor::Process(const RenderBuffer& render_buffer,
const rtc::ArrayView<const float> capture,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
SubtractorOutput* output) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
rtc::ArrayView<const float> y = capture;
FftData& E_main = output->E_main;
FftData E_shadow;
std::array<float, kBlockSize>& e_main = output->e_main;
std::array<float, kBlockSize>& e_shadow = output->e_shadow;
FftData S;
FftData& G = S;
// Form the output of the main filter.
main_filter_.Filter(render_buffer, &S);
PredictionError(fft_, S, y, &e_main, &E_main, &output->s_main);
// Form the output of the shadow filter.
shadow_filter_.Filter(render_buffer, &S);
PredictionError(fft_, S, y, &e_shadow, &E_shadow, nullptr);
if (!converged_filter_) {
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
const float e2_main =
std::accumulate(e_main.begin(), e_main.end(), 0.f, sum_of_squares);
const float e2_shadow =
std::accumulate(e_shadow.begin(), e_shadow.end(), 0.f, sum_of_squares);
const float y2 = std::accumulate(y.begin(), y.end(), 0.f, sum_of_squares);
if (y2 > kBlockSize * 50.f * 50.f) {
converged_filter_ = (e2_main > 0.3 * y2 || e2_shadow > 0.1 * y2);
}
}
// Compute spectra for future use.
E_main.Spectrum(optimization_, output->E2_main);
E_shadow.Spectrum(optimization_, output->E2_shadow);
// Update the main filter.
G_main_.Compute(render_buffer, render_signal_analyzer, *output, main_filter_,
aec_state.SaturatedCapture(), &G);
main_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im);
// Update the shadow filter.
G_shadow_.Compute(render_buffer, render_signal_analyzer, E_shadow,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture(), &G);
shadow_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im);
main_filter_.DumpFilter("aec3_subtractor_H_main");
shadow_filter_.DumpFilter("aec3_subtractor_H_shadow");
}
} // namespace webrtc