Per Åhgren 5f1a31c565 Adding a smooth transition from the startup phase parameter set in AEC3
This CL ensures a smooth transition from the parameters used during
the startup phase in the call to the parameters used in the rest of the
call. This is achieved by slowly transitioning between the parameter
sets via interpolation.

Bug: chromium:819240,webrtc:8983
Change-Id: Ifbac4b93fc6ad6efc441f41fb88ef09e8ee3d669
Reviewed-on: https://webrtc-review.googlesource.com/60360
Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#22451}
2018-03-15 13:38:16 +00:00

214 lines
8.2 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <numeric>
#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
void PredictionError(const Aec3Fft& fft,
const FftData& S,
rtc::ArrayView<const float> y,
std::array<float, kBlockSize>* e,
std::array<float, kBlockSize>* s,
bool* saturation) {
std::array<float, kFftLength> tmp;
fft.Ifft(S, &tmp);
constexpr float kScale = 1.0f / kFftLengthBy2;
std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(),
[&](float a, float b) { return a - b * kScale; });
*saturation = false;
if (s) {
for (size_t k = 0; k < s->size(); ++k) {
(*s)[k] = kScale * tmp[k + kFftLengthBy2];
}
auto result = std::minmax_element(s->begin(), s->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
if (!(*saturation)) {
auto result = std::minmax_element(e->begin(), e->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
std::for_each(e->begin(), e->end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
}
} // namespace
Subtractor::Subtractor(const EchoCanceller3Config& config,
ApmDataDumper* data_dumper,
Aec3Optimization optimization)
: fft_(),
data_dumper_(data_dumper),
optimization_(optimization),
config_(config),
main_filter_(config_.filter.main.length_blocks,
config_.filter.main_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
shadow_filter_(config_.filter.shadow.length_blocks,
config_.filter.shadow_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
G_main_(config_.filter.main_initial,
config_.filter.config_change_duration_blocks),
G_shadow_(config_.filter.shadow_initial,
config.filter.config_change_duration_blocks) {
RTC_DCHECK(data_dumper_);
// Currently, the rest of AEC3 requires the main and shadow filter lengths to
// be identical.
RTC_DCHECK_EQ(config_.filter.main.length_blocks,
config_.filter.shadow.length_blocks);
RTC_DCHECK_EQ(config_.filter.main_initial.length_blocks,
config_.filter.shadow_initial.length_blocks);
}
Subtractor::~Subtractor() = default;
void Subtractor::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
main_filter_.HandleEchoPathChange();
shadow_filter_.HandleEchoPathChange();
G_main_.HandleEchoPathChange(echo_path_variability);
G_shadow_.HandleEchoPathChange();
G_main_.SetConfig(config_.filter.main_initial, true);
G_shadow_.SetConfig(config_.filter.shadow_initial, true);
main_filter_converged_ = false;
shadow_filter_converged_ = false;
main_filter_.SetSizePartitions(config_.filter.main_initial.length_blocks,
true);
shadow_filter_.SetSizePartitions(
config_.filter.shadow_initial.length_blocks, true);
};
// TODO(peah): Add delay-change specific reset behavior.
if ((echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kBufferFlush) ||
(echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kDelayReset)) {
full_reset();
} else if (echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kNewDetectedDelay) {
full_reset();
} else if (echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kBufferReadjustment) {
full_reset();
}
}
void Subtractor::ExitInitialState() {
G_main_.SetConfig(config_.filter.main, false);
G_shadow_.SetConfig(config_.filter.shadow, false);
main_filter_.SetSizePartitions(config_.filter.main.length_blocks, false);
shadow_filter_.SetSizePartitions(config_.filter.shadow.length_blocks, false);
}
void Subtractor::Process(const RenderBuffer& render_buffer,
const rtc::ArrayView<const float> capture,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
SubtractorOutput* output) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
rtc::ArrayView<const float> y = capture;
FftData& E_main = output->E_main;
FftData& E_main_nonwindowed = output->E_main_nonwindowed;
FftData E_shadow;
std::array<float, kBlockSize>& e_main = output->e_main;
std::array<float, kBlockSize>& e_shadow = output->e_shadow;
FftData S;
FftData& G = S;
// Form the output of the main filter.
main_filter_.Filter(render_buffer, &S);
bool main_saturation = false;
PredictionError(fft_, S, y, &e_main, &output->s_main, &main_saturation);
fft_.ZeroPaddedFft(e_main, Aec3Fft::Window::kHanning, &E_main);
// Form the output of the shadow filter.
shadow_filter_.Filter(render_buffer, &S);
bool shadow_saturation = false;
PredictionError(fft_, S, y, &e_shadow, nullptr, &shadow_saturation);
fft_.ZeroPaddedFft(e_shadow, Aec3Fft::Window::kHanning, &E_shadow);
if (!(main_filter_converged_ || shadow_filter_converged_)) {
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
const float y2 = std::accumulate(y.begin(), y.end(), 0.f, sum_of_squares);
if (!main_filter_converged_) {
const float e2_main =
std::accumulate(e_main.begin(), e_main.end(), 0.f, sum_of_squares);
main_filter_converged_ = e2_main > 0.1 * y2;
}
if (!shadow_filter_converged_) {
const float e2_shadow = std::accumulate(e_shadow.begin(), e_shadow.end(),
0.f, sum_of_squares);
shadow_filter_converged_ = e2_shadow > 0.1 * y2;
}
}
// Compute spectra for future use.
E_shadow.Spectrum(optimization_, output->E2_shadow);
E_main.Spectrum(optimization_, output->E2_main);
if (main_filter_converged_ || !shadow_filter_converged_) {
fft_.ZeroPaddedFft(e_main, Aec3Fft::Window::kRectangular,
&E_main_nonwindowed);
E_main_nonwindowed.Spectrum(optimization_, output->E2_main_nonwindowed);
} else {
fft_.ZeroPaddedFft(e_shadow, Aec3Fft::Window::kRectangular,
&E_main_nonwindowed);
E_main_nonwindowed.Spectrum(optimization_, output->E2_main_nonwindowed);
}
// Update the main filter.
std::array<float, kFftLengthBy2Plus1> X2;
render_buffer.SpectralSum(main_filter_.SizePartitions(), &X2);
G_main_.Compute(X2, render_signal_analyzer, *output, main_filter_,
aec_state.SaturatedCapture() || main_saturation, &G);
main_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im);
// Update the shadow filter.
if (shadow_filter_.SizePartitions() != main_filter_.SizePartitions()) {
render_buffer.SpectralSum(shadow_filter_.SizePartitions(), &X2);
}
G_shadow_.Compute(X2, render_signal_analyzer, E_shadow,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture() || shadow_saturation, &G);
shadow_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im);
main_filter_.DumpFilter("aec3_subtractor_H_main", "aec3_subtractor_h_main");
shadow_filter_.DumpFilter("aec3_subtractor_H_shadow",
"aec3_subtractor_h_shadow");
}
} // namespace webrtc