webrtc_m130/webrtc/test/fake_network_pipe.cc
pkasting@chromium.org 0b1534c52e Use int64_t for milliseconds more often, primarily for TimeUntilNextProcess.
This fixes a variety of MSVC warnings about value truncations when implicitly
storing the 64-bit values we get back from e.g. TimeTicks in 32-bit objects, and
removes the need for a number of explicit casts.

This also moves a number of constants so they're declared right where they're used, which is easier to read and maintain, and makes some of them of integral type rather than using the "enum hack".

BUG=chromium:81439
TEST=none
R=tommi@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/33649004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7905 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-12-15 22:09:40 +00:00

220 lines
7.0 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/test/fake_network_pipe.h"
#include <assert.h>
#include <math.h>
#include <string.h>
#include <algorithm>
#include "webrtc/call.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/tick_util.h"
namespace webrtc {
const double kPi = 3.14159265;
static int GaussianRandom(int mean_delay_ms, int standard_deviation_ms) {
// Creating a Normal distribution variable from two independent uniform
// variables based on the Box-Muller transform.
double uniform1 = (rand() + 1.0) / (RAND_MAX + 1.0); // NOLINT
double uniform2 = (rand() + 1.0) / (RAND_MAX + 1.0); // NOLINT
return static_cast<int>(mean_delay_ms + standard_deviation_ms *
sqrt(-2 * log(uniform1)) * cos(2 * kPi * uniform2));
}
static bool UniformLoss(int loss_percent) {
int outcome = rand() % 100;
return outcome < loss_percent;
}
class NetworkPacket {
public:
NetworkPacket(const uint8_t* data, size_t length, int64_t send_time,
int64_t arrival_time)
: data_(NULL),
data_length_(length),
send_time_(send_time),
arrival_time_(arrival_time) {
data_ = new uint8_t[length];
memcpy(data_, data, length);
}
~NetworkPacket() {
delete [] data_;
}
uint8_t* data() const { return data_; }
size_t data_length() const { return data_length_; }
int64_t send_time() const { return send_time_; }
int64_t arrival_time() const { return arrival_time_; }
void IncrementArrivalTime(int64_t extra_delay) {
arrival_time_+= extra_delay;
}
private:
// The packet data.
uint8_t* data_;
// Length of data_.
size_t data_length_;
// The time the packet was sent out on the network.
const int64_t send_time_;
// The time the packet should arrive at the reciver.
int64_t arrival_time_;
};
FakeNetworkPipe::FakeNetworkPipe(
const FakeNetworkPipe::Config& config)
: lock_(CriticalSectionWrapper::CreateCriticalSection()),
packet_receiver_(NULL),
config_(config),
dropped_packets_(0),
sent_packets_(0),
total_packet_delay_(0),
next_process_time_(TickTime::MillisecondTimestamp()) {
}
FakeNetworkPipe::~FakeNetworkPipe() {
while (!capacity_link_.empty()) {
delete capacity_link_.front();
capacity_link_.pop();
}
while (!delay_link_.empty()) {
delete delay_link_.front();
delay_link_.pop();
}
}
void FakeNetworkPipe::SetReceiver(PacketReceiver* receiver) {
packet_receiver_ = receiver;
}
void FakeNetworkPipe::SetConfig(const FakeNetworkPipe::Config& config) {
CriticalSectionScoped crit(lock_.get());
config_ = config; // Shallow copy of the struct.
}
void FakeNetworkPipe::SendPacket(const uint8_t* data, size_t data_length) {
// A NULL packet_receiver_ means that this pipe will terminate the flow of
// packets.
if (packet_receiver_ == NULL)
return;
CriticalSectionScoped crit(lock_.get());
if (config_.queue_length_packets > 0 &&
capacity_link_.size() >= config_.queue_length_packets) {
// Too many packet on the link, drop this one.
++dropped_packets_;
return;
}
int64_t time_now = TickTime::MillisecondTimestamp();
// Delay introduced by the link capacity.
int64_t capacity_delay_ms = 0;
if (config_.link_capacity_kbps > 0)
capacity_delay_ms = data_length / (config_.link_capacity_kbps / 8);
int64_t network_start_time = time_now;
// Check if there already are packets on the link and change network start
// time if there is.
if (capacity_link_.size() > 0)
network_start_time = capacity_link_.back()->arrival_time();
int64_t arrival_time = network_start_time + capacity_delay_ms;
NetworkPacket* packet = new NetworkPacket(data, data_length, time_now,
arrival_time);
capacity_link_.push(packet);
}
float FakeNetworkPipe::PercentageLoss() {
CriticalSectionScoped crit(lock_.get());
if (sent_packets_ == 0)
return 0;
return static_cast<float>(dropped_packets_) /
(sent_packets_ + dropped_packets_);
}
int FakeNetworkPipe::AverageDelay() {
CriticalSectionScoped crit(lock_.get());
if (sent_packets_ == 0)
return 0;
return total_packet_delay_ / static_cast<int>(sent_packets_);
}
void FakeNetworkPipe::Process() {
int64_t time_now = TickTime::MillisecondTimestamp();
std::queue<NetworkPacket*> packets_to_deliver;
{
CriticalSectionScoped crit(lock_.get());
// Check the capacity link first.
while (capacity_link_.size() > 0 &&
time_now >= capacity_link_.front()->arrival_time()) {
// Time to get this packet.
NetworkPacket* packet = capacity_link_.front();
capacity_link_.pop();
// Packets are randomly dropped after being affected by the bottleneck.
if (UniformLoss(config_.loss_percent)) {
delete packet;
continue;
}
// Add extra delay and jitter, but make sure the arrival time is not
// earlier than the last packet in the queue.
int extra_delay = GaussianRandom(config_.queue_delay_ms,
config_.delay_standard_deviation_ms);
if (delay_link_.size() > 0 &&
packet->arrival_time() + extra_delay <
delay_link_.back()->arrival_time()) {
extra_delay = delay_link_.back()->arrival_time() -
packet->arrival_time();
}
packet->IncrementArrivalTime(extra_delay);
if (packet->arrival_time() < next_process_time_)
next_process_time_ = packet->arrival_time();
delay_link_.push(packet);
}
// Check the extra delay queue.
while (delay_link_.size() > 0 &&
time_now >= delay_link_.front()->arrival_time()) {
// Deliver this packet.
NetworkPacket* packet = delay_link_.front();
packets_to_deliver.push(packet);
delay_link_.pop();
// |time_now| might be later than when the packet should have arrived, due
// to NetworkProcess being called too late. For stats, use the time it
// should have been on the link.
total_packet_delay_ += packet->arrival_time() - packet->send_time();
}
sent_packets_ += packets_to_deliver.size();
}
while (!packets_to_deliver.empty()) {
NetworkPacket* packet = packets_to_deliver.front();
packets_to_deliver.pop();
packet_receiver_->DeliverPacket(packet->data(), packet->data_length());
delete packet;
}
}
int64_t FakeNetworkPipe::TimeUntilNextProcess() const {
CriticalSectionScoped crit(lock_.get());
const int64_t kDefaultProcessIntervalMs = 30;
if (capacity_link_.size() == 0 || delay_link_.size() == 0)
return kDefaultProcessIntervalMs;
return std::max<int64_t>(
next_process_time_ - TickTime::MillisecondTimestamp(), 0);
}
} // namespace webrtc