henrika 8324b525dc Adding playout volume control to WebRtcAudioTrack.java.
Also adds a framework for an AudioManager to be used by both sides (playout and recording).
This initial implementation only does very simple tasks like setting up the correct audio
mode (needed for correct volume behavior). Note that this CL is mainly about modifying
the volume. The added AudioManager is only a place holder for future work. I could have
done the same parts in the WebRtcAudioTrack class but feel that it is better to move these
parts to an AudioManager already at this stage.

The AudioManager supports Init() where actual audio changes are done (set audio mode etc.)
but it can also be used a simple "construct-and-store-audio-parameters" unit, which is the
case here. Hence, the AM now serves as the center for getting audio parameters and then inject
these into playout and recording sides. Previously, both sides acquired their own parameters
and that is more error prone.

BUG=NONE
TEST=AudioDeviceTest
R=perkj@webrtc.org, phoglund@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/45829004

Cr-Commit-Position: refs/heads/master@{#8875}
2015-03-27 09:56:35 +00:00

537 lines
16 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_device/android/opensles_input.h"
#include <assert.h>
#include "webrtc/modules/audio_device/android/audio_common.h"
#include "webrtc/modules/audio_device/android/opensles_common.h"
#include "webrtc/modules/audio_device/android/single_rw_fifo.h"
#include "webrtc/modules/audio_device/audio_device_buffer.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/thread_wrapper.h"
#include "webrtc/system_wrappers/interface/trace.h"
#define VOID_RETURN
#define OPENSL_RETURN_ON_FAILURE(op, ret_val) \
do { \
SLresult err = (op); \
if (err != SL_RESULT_SUCCESS) { \
assert(false); \
return ret_val; \
} \
} while (0)
static const SLEngineOption kOption[] = {
{ SL_ENGINEOPTION_THREADSAFE, static_cast<SLuint32>(SL_BOOLEAN_TRUE) },
};
enum {
kNoOverrun,
kOverrun,
};
namespace webrtc {
OpenSlesInput::OpenSlesInput(
PlayoutDelayProvider* delay_provider, AudioManager* audio_manager)
: delay_provider_(delay_provider),
initialized_(false),
mic_initialized_(false),
rec_initialized_(false),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
recording_(false),
num_fifo_buffers_needed_(0),
number_overruns_(0),
sles_engine_(NULL),
sles_engine_itf_(NULL),
sles_recorder_(NULL),
sles_recorder_itf_(NULL),
sles_recorder_sbq_itf_(NULL),
audio_buffer_(NULL),
active_queue_(0),
rec_sampling_rate_(0),
agc_enabled_(false),
recording_delay_(0) {
}
OpenSlesInput::~OpenSlesInput() {
}
int32_t OpenSlesInput::SetAndroidAudioDeviceObjects(void* javaVM,
void* context) {
return 0;
}
void OpenSlesInput::ClearAndroidAudioDeviceObjects() {
}
int32_t OpenSlesInput::Init() {
assert(!initialized_);
// Set up OpenSL engine.
OPENSL_RETURN_ON_FAILURE(slCreateEngine(&sles_engine_, 1, kOption, 0,
NULL, NULL),
-1);
OPENSL_RETURN_ON_FAILURE((*sles_engine_)->Realize(sles_engine_,
SL_BOOLEAN_FALSE),
-1);
OPENSL_RETURN_ON_FAILURE((*sles_engine_)->GetInterface(sles_engine_,
SL_IID_ENGINE,
&sles_engine_itf_),
-1);
if (InitSampleRate() != 0) {
return -1;
}
AllocateBuffers();
initialized_ = true;
return 0;
}
int32_t OpenSlesInput::Terminate() {
// It is assumed that the caller has stopped recording before terminating.
assert(!recording_);
(*sles_engine_)->Destroy(sles_engine_);
initialized_ = false;
mic_initialized_ = false;
rec_initialized_ = false;
return 0;
}
int32_t OpenSlesInput::RecordingDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) {
assert(index == 0);
// Empty strings.
name[0] = '\0';
guid[0] = '\0';
return 0;
}
int32_t OpenSlesInput::SetRecordingDevice(uint16_t index) {
assert(index == 0);
return 0;
}
int32_t OpenSlesInput::RecordingIsAvailable(bool& available) { // NOLINT
available = true;
return 0;
}
int32_t OpenSlesInput::InitRecording() {
assert(initialized_);
rec_initialized_ = true;
return 0;
}
int32_t OpenSlesInput::StartRecording() {
assert(rec_initialized_);
assert(!recording_);
if (!CreateAudioRecorder()) {
return -1;
}
// Setup to receive buffer queue event callbacks.
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_sbq_itf_)->RegisterCallback(
sles_recorder_sbq_itf_,
RecorderSimpleBufferQueueCallback,
this),
-1);
if (!EnqueueAllBuffers()) {
return -1;
}
{
// To prevent the compiler from e.g. optimizing the code to
// recording_ = StartCbThreads() which wouldn't have been thread safe.
CriticalSectionScoped lock(crit_sect_.get());
recording_ = true;
}
if (!StartCbThreads()) {
recording_ = false;
return -1;
}
return 0;
}
int32_t OpenSlesInput::StopRecording() {
StopCbThreads();
DestroyAudioRecorder();
recording_ = false;
return 0;
}
int32_t OpenSlesInput::SetAGC(bool enable) {
agc_enabled_ = enable;
return 0;
}
int32_t OpenSlesInput::InitMicrophone() {
assert(initialized_);
assert(!recording_);
mic_initialized_ = true;
return 0;
}
int32_t OpenSlesInput::MicrophoneVolumeIsAvailable(bool& available) { // NOLINT
available = false;
return 0;
}
int32_t OpenSlesInput::MinMicrophoneVolume(
uint32_t& minVolume) const { // NOLINT
minVolume = 0;
return 0;
}
int32_t OpenSlesInput::MicrophoneVolumeStepSize(
uint16_t& stepSize) const {
stepSize = 1;
return 0;
}
int32_t OpenSlesInput::MicrophoneMuteIsAvailable(bool& available) { // NOLINT
available = false; // Mic mute not supported on Android
return 0;
}
int32_t OpenSlesInput::MicrophoneBoostIsAvailable(bool& available) { // NOLINT
available = false; // Mic boost not supported on Android.
return 0;
}
int32_t OpenSlesInput::SetMicrophoneBoost(bool enable) {
assert(false);
return -1; // Not supported
}
int32_t OpenSlesInput::MicrophoneBoost(bool& enabled) const { // NOLINT
assert(false);
return -1; // Not supported
}
int32_t OpenSlesInput::StereoRecordingIsAvailable(bool& available) { // NOLINT
available = false; // Stereo recording not supported on Android.
return 0;
}
int32_t OpenSlesInput::StereoRecording(bool& enabled) const { // NOLINT
enabled = false;
return 0;
}
int32_t OpenSlesInput::RecordingDelay(uint16_t& delayMS) const { // NOLINT
delayMS = recording_delay_;
return 0;
}
void OpenSlesInput::AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) {
audio_buffer_ = audioBuffer;
}
int OpenSlesInput::InitSampleRate() {
UpdateSampleRate();
audio_buffer_->SetRecordingSampleRate(rec_sampling_rate_);
audio_buffer_->SetRecordingChannels(kNumChannels);
UpdateRecordingDelay();
return 0;
}
int OpenSlesInput::buffer_size_samples() const {
// Since there is no low latency recording, use buffer size corresponding to
// 10ms of data since that's the framesize WebRTC uses. Getting any other
// size would require patching together buffers somewhere before passing them
// to WebRTC.
return rec_sampling_rate_ * 10 / 1000;
}
int OpenSlesInput::buffer_size_bytes() const {
return buffer_size_samples() * kNumChannels * sizeof(int16_t);
}
void OpenSlesInput::UpdateRecordingDelay() {
// TODO(hellner): Add accurate delay estimate.
// On average half the current buffer will have been filled with audio.
int outstanding_samples =
(TotalBuffersUsed() - 0.5) * buffer_size_samples();
recording_delay_ = outstanding_samples / (rec_sampling_rate_ / 1000);
}
void OpenSlesInput::UpdateSampleRate() {
rec_sampling_rate_ = audio_manager_.low_latency_supported() ?
audio_manager_.native_output_sample_rate() : kDefaultSampleRate;
}
void OpenSlesInput::CalculateNumFifoBuffersNeeded() {
// Buffer size is 10ms of data.
num_fifo_buffers_needed_ = kNum10MsToBuffer;
}
void OpenSlesInput::AllocateBuffers() {
// Allocate FIFO to handle passing buffers between processing and OpenSL
// threads.
CalculateNumFifoBuffersNeeded();
assert(num_fifo_buffers_needed_ > 0);
fifo_.reset(new SingleRwFifo(num_fifo_buffers_needed_));
// Allocate the memory area to be used.
rec_buf_.reset(new rtc::scoped_ptr<int8_t[]>[TotalBuffersUsed()]);
for (int i = 0; i < TotalBuffersUsed(); ++i) {
rec_buf_[i].reset(new int8_t[buffer_size_bytes()]);
}
}
int OpenSlesInput::TotalBuffersUsed() const {
return num_fifo_buffers_needed_ + kNumOpenSlBuffers;
}
bool OpenSlesInput::EnqueueAllBuffers() {
active_queue_ = 0;
number_overruns_ = 0;
for (int i = 0; i < kNumOpenSlBuffers; ++i) {
memset(rec_buf_[i].get(), 0, buffer_size_bytes());
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_sbq_itf_)->Enqueue(
sles_recorder_sbq_itf_,
reinterpret_cast<void*>(rec_buf_[i].get()),
buffer_size_bytes()),
false);
}
// In case of underrun the fifo will be at capacity. In case of first enqueue
// no audio can have been returned yet meaning fifo must be empty. Any other
// values are unexpected.
assert(fifo_->size() == fifo_->capacity() ||
fifo_->size() == 0);
// OpenSL recording has been stopped. I.e. only this thread is touching
// |fifo_|.
while (fifo_->size() != 0) {
// Clear the fifo.
fifo_->Pop();
}
return true;
}
bool OpenSlesInput::CreateAudioRecorder() {
if (!event_.Start()) {
assert(false);
return false;
}
SLDataLocator_IODevice micLocator = {
SL_DATALOCATOR_IODEVICE, SL_IODEVICE_AUDIOINPUT,
SL_DEFAULTDEVICEID_AUDIOINPUT, NULL };
SLDataSource audio_source = { &micLocator, NULL };
SLDataLocator_AndroidSimpleBufferQueue simple_buf_queue = {
SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,
static_cast<SLuint32>(TotalBuffersUsed())
};
SLDataFormat_PCM configuration =
webrtc_opensl::CreatePcmConfiguration(rec_sampling_rate_);
SLDataSink audio_sink = { &simple_buf_queue, &configuration };
// Interfaces for recording android audio data and Android are needed.
// Note the interfaces still need to be initialized. This only tells OpenSl
// that the interfaces will be needed at some point.
const SLInterfaceID id[kNumInterfaces] = {
SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION };
const SLboolean req[kNumInterfaces] = {
SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };
OPENSL_RETURN_ON_FAILURE(
(*sles_engine_itf_)->CreateAudioRecorder(sles_engine_itf_,
&sles_recorder_,
&audio_source,
&audio_sink,
kNumInterfaces,
id,
req),
false);
SLAndroidConfigurationItf recorder_config;
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_)->GetInterface(sles_recorder_,
SL_IID_ANDROIDCONFIGURATION,
&recorder_config),
false);
// Set audio recorder configuration to
// SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION which ensures that we
// use the main microphone tuned for audio communications.
SLint32 stream_type = SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION;
OPENSL_RETURN_ON_FAILURE(
(*recorder_config)->SetConfiguration(recorder_config,
SL_ANDROID_KEY_RECORDING_PRESET,
&stream_type,
sizeof(SLint32)),
false);
// Realize the recorder in synchronous mode.
OPENSL_RETURN_ON_FAILURE((*sles_recorder_)->Realize(sles_recorder_,
SL_BOOLEAN_FALSE),
false);
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_)->GetInterface(sles_recorder_, SL_IID_RECORD,
static_cast<void*>(&sles_recorder_itf_)),
false);
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_)->GetInterface(
sles_recorder_,
SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
static_cast<void*>(&sles_recorder_sbq_itf_)),
false);
return true;
}
void OpenSlesInput::DestroyAudioRecorder() {
event_.Stop();
if (sles_recorder_sbq_itf_) {
// Release all buffers currently queued up.
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_sbq_itf_)->Clear(sles_recorder_sbq_itf_),
VOID_RETURN);
sles_recorder_sbq_itf_ = NULL;
}
sles_recorder_itf_ = NULL;
if (sles_recorder_) {
(*sles_recorder_)->Destroy(sles_recorder_);
sles_recorder_ = NULL;
}
}
bool OpenSlesInput::HandleOverrun(int event_id, int event_msg) {
if (!recording_) {
return false;
}
if (event_id == kNoOverrun) {
return false;
}
assert(event_id == kOverrun);
assert(event_msg > 0);
// Wait for all enqueued buffers be flushed.
if (event_msg != kNumOpenSlBuffers) {
return true;
}
// All buffers passed to OpenSL have been flushed. Restart the audio from
// scratch.
// No need to check sles_recorder_itf_ as recording_ would be false before it
// is set to NULL.
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
SL_RECORDSTATE_STOPPED),
true);
EnqueueAllBuffers();
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
SL_RECORDSTATE_RECORDING),
true);
return true;
}
void OpenSlesInput::RecorderSimpleBufferQueueCallback(
SLAndroidSimpleBufferQueueItf queue_itf,
void* context) {
OpenSlesInput* audio_device = reinterpret_cast<OpenSlesInput*>(context);
audio_device->RecorderSimpleBufferQueueCallbackHandler(queue_itf);
}
void OpenSlesInput::RecorderSimpleBufferQueueCallbackHandler(
SLAndroidSimpleBufferQueueItf queue_itf) {
if (fifo_->size() >= fifo_->capacity() || number_overruns_ > 0) {
++number_overruns_;
event_.SignalEvent(kOverrun, number_overruns_);
return;
}
int8_t* audio = rec_buf_[active_queue_].get();
// There is at least one spot available in the fifo.
fifo_->Push(audio);
active_queue_ = (active_queue_ + 1) % TotalBuffersUsed();
event_.SignalEvent(kNoOverrun, 0);
// active_queue_ is indexing the next buffer to record to. Since the current
// buffer has been recorded it means that the buffer index
// kNumOpenSlBuffers - 1 past |active_queue_| contains the next free buffer.
// Since |fifo_| wasn't at capacity, at least one buffer is free to be used.
int next_free_buffer =
(active_queue_ + kNumOpenSlBuffers - 1) % TotalBuffersUsed();
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_sbq_itf_)->Enqueue(
sles_recorder_sbq_itf_,
reinterpret_cast<void*>(rec_buf_[next_free_buffer].get()),
buffer_size_bytes()),
VOID_RETURN);
}
bool OpenSlesInput::StartCbThreads() {
rec_thread_ = ThreadWrapper::CreateThread(CbThread, this,
"opensl_rec_thread");
assert(rec_thread_.get());
if (!rec_thread_->Start()) {
assert(false);
return false;
}
rec_thread_->SetPriority(kRealtimePriority);
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
SL_RECORDSTATE_RECORDING),
false);
return true;
}
void OpenSlesInput::StopCbThreads() {
{
CriticalSectionScoped lock(crit_sect_.get());
recording_ = false;
}
if (sles_recorder_itf_) {
OPENSL_RETURN_ON_FAILURE(
(*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
SL_RECORDSTATE_STOPPED),
VOID_RETURN);
}
if (rec_thread_.get() == NULL) {
return;
}
event_.Stop();
if (rec_thread_->Stop()) {
rec_thread_.reset();
} else {
assert(false);
}
}
bool OpenSlesInput::CbThread(void* context) {
return reinterpret_cast<OpenSlesInput*>(context)->CbThreadImpl();
}
bool OpenSlesInput::CbThreadImpl() {
int event_id;
int event_msg;
// event_ must not be waited on while a lock has been taken.
event_.WaitOnEvent(&event_id, &event_msg);
CriticalSectionScoped lock(crit_sect_.get());
if (HandleOverrun(event_id, event_msg)) {
return recording_;
}
// If the fifo_ has audio data process it.
while (fifo_->size() > 0 && recording_) {
int8_t* audio = fifo_->Pop();
audio_buffer_->SetRecordedBuffer(audio, buffer_size_samples());
audio_buffer_->SetVQEData(delay_provider_->PlayoutDelayMs(),
recording_delay_, 0);
audio_buffer_->DeliverRecordedData();
}
return recording_;
}
} // namespace webrtc