andrew@webrtc.org ddbb8a2c24 Support arbitrary input/output rates and downmixing in AudioProcessing.
Select "processing" rates based on the input and output sampling rates.
Resample the input streams to those rates, and if necessary to the
output rate.

- Remove deprecated stream format APIs.
- Remove deprecated device sample rate APIs.
- Add a ChannelBuffer class to help manage deinterleaved channels.
- Clean up the splitting filter state.
- Add a unit test which verifies the output against known-working
native format output.

BUG=2894
R=aluebs@webrtc.org, bjornv@webrtc.org, xians@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/9919004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@5959 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-04-22 21:00:04 +00:00

385 lines
12 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
namespace webrtc {
namespace {
enum {
kSamplesPer8kHzChannel = 80,
kSamplesPer16kHzChannel = 160,
kSamplesPer32kHzChannel = 320
};
void StereoToMono(const float* left, const float* right, float* out,
int samples_per_channel) {
for (int i = 0; i < samples_per_channel; ++i) {
out[i] = (left[i] + right[i]) / 2;
}
}
void StereoToMono(const int16_t* left, const int16_t* right, int16_t* out,
int samples_per_channel) {
for (int i = 0; i < samples_per_channel; i++)
out[i] = (left[i] + right[i]) >> 1;
}
} // namespace
class SplitChannelBuffer {
public:
SplitChannelBuffer(int samples_per_split_channel, int num_channels)
: low_(samples_per_split_channel, num_channels),
high_(samples_per_split_channel, num_channels) {
}
~SplitChannelBuffer() {}
int16_t* low_channel(int i) { return low_.channel(i); }
int16_t* high_channel(int i) { return high_.channel(i); }
private:
ChannelBuffer<int16_t> low_;
ChannelBuffer<int16_t> high_;
};
AudioBuffer::AudioBuffer(int input_samples_per_channel,
int num_input_channels,
int process_samples_per_channel,
int num_process_channels,
int output_samples_per_channel)
: input_samples_per_channel_(input_samples_per_channel),
num_input_channels_(num_input_channels),
proc_samples_per_channel_(process_samples_per_channel),
num_proc_channels_(num_process_channels),
output_samples_per_channel_(output_samples_per_channel),
samples_per_split_channel_(proc_samples_per_channel_),
num_mixed_channels_(0),
num_mixed_low_pass_channels_(0),
data_was_mixed_(false),
reference_copied_(false),
activity_(AudioFrame::kVadUnknown),
is_muted_(false),
data_(NULL),
channels_(new ChannelBuffer<int16_t>(proc_samples_per_channel_,
num_proc_channels_)) {
assert(input_samples_per_channel_ > 0);
assert(proc_samples_per_channel_ > 0);
assert(output_samples_per_channel_ > 0);
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
assert(num_proc_channels_ <= num_input_channels);
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
num_proc_channels_));
}
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
output_samples_per_channel_ != proc_samples_per_channel_) {
// Create an intermediate buffer for resampling.
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
num_proc_channels_));
}
if (input_samples_per_channel_ != proc_samples_per_channel_) {
input_resamplers_.reserve(num_proc_channels_);
for (int i = 0; i < num_proc_channels_; ++i) {
input_resamplers_.push_back(
new PushSincResampler(input_samples_per_channel_,
proc_samples_per_channel_));
}
}
if (output_samples_per_channel_ != proc_samples_per_channel_) {
output_resamplers_.reserve(num_proc_channels_);
for (int i = 0; i < num_proc_channels_; ++i) {
output_resamplers_.push_back(
new PushSincResampler(proc_samples_per_channel_,
output_samples_per_channel_));
}
}
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel) {
samples_per_split_channel_ = kSamplesPer16kHzChannel;
split_channels_.reset(new SplitChannelBuffer(samples_per_split_channel_,
num_proc_channels_));
filter_states_.reset(new SplitFilterStates[num_proc_channels_]);
}
}
void AudioBuffer::CopyFrom(const float* const* data,
int samples_per_channel,
AudioProcessing::ChannelLayout layout) {
assert(samples_per_channel == input_samples_per_channel_);
assert(ChannelsFromLayout(layout) == num_input_channels_);
InitForNewData();
// Downmix.
const float* const* data_ptr = data;
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
StereoToMono(data[0],
data[1],
input_buffer_->channel(0),
input_samples_per_channel_);
data_ptr = input_buffer_->channels();
}
// Resample.
if (input_samples_per_channel_ != proc_samples_per_channel_) {
for (int i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(data_ptr[i],
input_samples_per_channel_,
process_buffer_->channel(i),
proc_samples_per_channel_);
}
data_ptr = process_buffer_->channels();
}
// Convert to int16.
for (int i = 0; i < num_proc_channels_; ++i) {
ScaleAndRoundToInt16(data_ptr[i], proc_samples_per_channel_,
channels_->channel(i));
}
}
void AudioBuffer::CopyTo(int samples_per_channel,
AudioProcessing::ChannelLayout layout,
float* const* data) {
assert(samples_per_channel == output_samples_per_channel_);
assert(ChannelsFromLayout(layout) == num_proc_channels_);
// Convert to float.
float* const* data_ptr = data;
if (output_samples_per_channel_ != proc_samples_per_channel_) {
// Convert to an intermediate buffer for subsequent resampling.
data_ptr = process_buffer_->channels();
}
for (int i = 0; i < num_proc_channels_; ++i) {
ScaleToFloat(channels_->channel(i), proc_samples_per_channel_, data_ptr[i]);
}
// Resample.
if (output_samples_per_channel_ != proc_samples_per_channel_) {
for (int i = 0; i < num_proc_channels_; ++i) {
output_resamplers_[i]->Resample(data_ptr[i],
proc_samples_per_channel_,
data[i],
output_samples_per_channel_);
}
}
}
AudioBuffer::~AudioBuffer() {}
void AudioBuffer::InitForNewData() {
data_ = NULL;
data_was_mixed_ = false;
num_mixed_channels_ = 0;
num_mixed_low_pass_channels_ = 0;
reference_copied_ = false;
activity_ = AudioFrame::kVadUnknown;
is_muted_ = false;
}
int16_t* AudioBuffer::data(int channel) const {
assert(channel >= 0 && channel < num_proc_channels_);
if (data_ != NULL) {
return data_;
}
return channels_->channel(channel);
}
int16_t* AudioBuffer::low_pass_split_data(int channel) const {
assert(channel >= 0 && channel < num_proc_channels_);
if (split_channels_.get() == NULL) {
return data(channel);
}
return split_channels_->low_channel(channel);
}
int16_t* AudioBuffer::high_pass_split_data(int channel) const {
assert(channel >= 0 && channel < num_proc_channels_);
if (split_channels_.get() == NULL) {
return NULL;
}
return split_channels_->high_channel(channel);
}
int16_t* AudioBuffer::mixed_data(int channel) const {
assert(channel >= 0 && channel < num_mixed_channels_);
return mixed_channels_->channel(channel);
}
int16_t* AudioBuffer::mixed_low_pass_data(int channel) const {
assert(channel >= 0 && channel < num_mixed_low_pass_channels_);
return mixed_low_pass_channels_->channel(channel);
}
int16_t* AudioBuffer::low_pass_reference(int channel) const {
assert(channel >= 0 && channel < num_proc_channels_);
if (!reference_copied_) {
return NULL;
}
return low_pass_reference_channels_->channel(channel);
}
SplitFilterStates* AudioBuffer::filter_states(int channel) const {
assert(channel >= 0 && channel < num_proc_channels_);
return &filter_states_[channel];
}
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
activity_ = activity;
}
AudioFrame::VADActivity AudioBuffer::activity() const {
return activity_;
}
bool AudioBuffer::is_muted() const {
return is_muted_;
}
int AudioBuffer::num_channels() const {
return num_proc_channels_;
}
int AudioBuffer::samples_per_channel() const {
return proc_samples_per_channel_;
}
int AudioBuffer::samples_per_split_channel() const {
return samples_per_split_channel_;
}
// TODO(andrew): Do deinterleaving and mixing in one step?
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
assert(proc_samples_per_channel_ == input_samples_per_channel_);
assert(num_proc_channels_ == num_input_channels_);
assert(frame->num_channels_ == num_proc_channels_);
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
InitForNewData();
activity_ = frame->vad_activity_;
if (frame->energy_ == 0) {
is_muted_ = true;
}
if (num_proc_channels_ == 1) {
// We can get away with a pointer assignment in this case.
data_ = frame->data_;
return;
}
int16_t* interleaved = frame->data_;
for (int i = 0; i < num_proc_channels_; i++) {
int16_t* deinterleaved = channels_->channel(i);
int interleaved_idx = i;
for (int j = 0; j < proc_samples_per_channel_; j++) {
deinterleaved[j] = interleaved[interleaved_idx];
interleaved_idx += num_proc_channels_;
}
}
}
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
assert(proc_samples_per_channel_ == output_samples_per_channel_);
assert(num_proc_channels_ == num_input_channels_);
assert(frame->num_channels_ == num_proc_channels_);
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
frame->vad_activity_ = activity_;
if (!data_changed) {
return;
}
if (num_proc_channels_ == 1) {
if (data_was_mixed_) {
memcpy(frame->data_,
channels_->channel(0),
sizeof(int16_t) * proc_samples_per_channel_);
} else {
// These should point to the same buffer in this case.
assert(data_ == frame->data_);
}
return;
}
int16_t* interleaved = frame->data_;
for (int i = 0; i < num_proc_channels_; i++) {
int16_t* deinterleaved = channels_->channel(i);
int interleaved_idx = i;
for (int j = 0; j < proc_samples_per_channel_; j++) {
interleaved[interleaved_idx] = deinterleaved[j];
interleaved_idx += num_proc_channels_;
}
}
}
void AudioBuffer::CopyAndMix(int num_mixed_channels) {
// We currently only support the stereo to mono case.
assert(num_proc_channels_ == 2);
assert(num_mixed_channels == 1);
if (!mixed_channels_.get()) {
mixed_channels_.reset(
new ChannelBuffer<int16_t>(proc_samples_per_channel_,
num_mixed_channels));
}
StereoToMono(channels_->channel(0),
channels_->channel(1),
mixed_channels_->channel(0),
proc_samples_per_channel_);
num_mixed_channels_ = num_mixed_channels;
}
void AudioBuffer::CopyAndMixLowPass(int num_mixed_channels) {
// We currently only support the stereo to mono case.
assert(num_proc_channels_ == 2);
assert(num_mixed_channels == 1);
if (!mixed_low_pass_channels_.get()) {
mixed_low_pass_channels_.reset(
new ChannelBuffer<int16_t>(samples_per_split_channel_,
num_mixed_channels));
}
StereoToMono(low_pass_split_data(0),
low_pass_split_data(1),
mixed_low_pass_channels_->channel(0),
samples_per_split_channel_);
num_mixed_low_pass_channels_ = num_mixed_channels;
}
void AudioBuffer::CopyLowPassToReference() {
reference_copied_ = true;
if (!low_pass_reference_channels_.get()) {
low_pass_reference_channels_.reset(
new ChannelBuffer<int16_t>(samples_per_split_channel_,
num_proc_channels_));
}
for (int i = 0; i < num_proc_channels_; i++) {
low_pass_reference_channels_->CopyFrom(low_pass_split_data(i), i);
}
}
} // namespace webrtc