Encoded frames are preserved and decoded after all layers are encoded. Each spatial layer is decoded with separate decoder. For quality evaluation of lowres layers original input frame is downscaled with bilinear interpolation. Encoded and decoded frames are dumped into separate files. For async codecs encoded frames are passed to decoder in encode callback, as before. Bug: webrtc:8524 Change-Id: Idb0c92c7274c1915cff9a011a2794f1cf4bc8cb1 Reviewed-on: https://webrtc-review.googlesource.com/43381 Commit-Queue: Sergey Silkin <ssilkin@webrtc.org> Reviewed-by: Rasmus Brandt <brandtr@webrtc.org> Cr-Commit-Position: refs/heads/master@{#21844}
507 lines
20 KiB
C++
507 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/codecs/test/videoprocessor.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <utility>
|
|
|
|
#include "api/video/i420_buffer.h"
|
|
#include "common_types.h" // NOLINT(build/include)
|
|
#include "common_video/h264/h264_common.h"
|
|
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
|
|
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
|
|
#include "modules/video_coding/include/video_codec_initializer.h"
|
|
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/timeutils.h"
|
|
#include "test/gtest.h"
|
|
#include "third_party/libyuv/include/libyuv/scale.h"
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
|
|
namespace {
|
|
const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000;
|
|
|
|
std::unique_ptr<VideoBitrateAllocator> CreateBitrateAllocator(
|
|
TestConfig* config) {
|
|
std::unique_ptr<TemporalLayersFactory> tl_factory;
|
|
if (config->codec_settings.codecType == VideoCodecType::kVideoCodecVP8) {
|
|
tl_factory.reset(new TemporalLayersFactory());
|
|
config->codec_settings.VP8()->tl_factory = tl_factory.get();
|
|
}
|
|
return std::unique_ptr<VideoBitrateAllocator>(
|
|
VideoCodecInitializer::CreateBitrateAllocator(config->codec_settings,
|
|
std::move(tl_factory)));
|
|
}
|
|
|
|
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
|
|
const TestConfig& config) {
|
|
if (config.codec_settings.codecType != kVideoCodecH264)
|
|
return 0;
|
|
|
|
std::vector<webrtc::H264::NaluIndex> nalu_indices =
|
|
webrtc::H264::FindNaluIndices(encoded_frame._buffer,
|
|
encoded_frame._length);
|
|
|
|
RTC_CHECK(!nalu_indices.empty());
|
|
|
|
size_t max_size = 0;
|
|
for (const webrtc::H264::NaluIndex& index : nalu_indices)
|
|
max_size = std::max(max_size, index.payload_size);
|
|
|
|
return max_size;
|
|
}
|
|
|
|
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
|
|
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
|
|
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
|
|
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
|
|
return static_cast<int>(diff_us);
|
|
}
|
|
|
|
void ExtractBufferWithSize(const VideoFrame& image,
|
|
int width,
|
|
int height,
|
|
rtc::Buffer* buffer) {
|
|
if (image.width() != width || image.height() != height) {
|
|
EXPECT_DOUBLE_EQ(static_cast<double>(width) / height,
|
|
static_cast<double>(image.width()) / image.height());
|
|
// Same aspect ratio, no cropping needed.
|
|
rtc::scoped_refptr<I420Buffer> scaled(I420Buffer::Create(width, height));
|
|
scaled->ScaleFrom(*image.video_frame_buffer()->ToI420());
|
|
|
|
size_t length =
|
|
CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height());
|
|
buffer->SetSize(length);
|
|
RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1);
|
|
return;
|
|
}
|
|
|
|
// No resize.
|
|
size_t length =
|
|
CalcBufferSize(VideoType::kI420, image.width(), image.height());
|
|
buffer->SetSize(length);
|
|
RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
|
|
VideoDecoderList* decoders,
|
|
FrameReader* input_frame_reader,
|
|
const TestConfig& config,
|
|
std::vector<Stats>* stats,
|
|
IvfFileWriterList* encoded_frame_writers,
|
|
FrameWriterList* decoded_frame_writers)
|
|
: config_(config),
|
|
num_simulcast_or_spatial_layers_(
|
|
std::max(config_.NumberOfSimulcastStreams(),
|
|
config_.NumberOfSpatialLayers())),
|
|
encoder_(encoder),
|
|
decoders_(decoders),
|
|
bitrate_allocator_(CreateBitrateAllocator(&config_)),
|
|
encode_callback_(this),
|
|
decode_callback_(this),
|
|
input_frame_reader_(input_frame_reader),
|
|
encoded_frame_writers_(encoded_frame_writers),
|
|
decoded_frame_writers_(decoded_frame_writers),
|
|
last_inputed_frame_num_(0),
|
|
last_encoded_frame_num_(0),
|
|
last_encoded_simulcast_svc_idx_(0),
|
|
last_decoded_frame_num_(0),
|
|
num_encoded_frames_(0),
|
|
num_decoded_frames_(0),
|
|
stats_(stats) {
|
|
RTC_CHECK(encoder);
|
|
RTC_CHECK(decoders && decoders->size() == num_simulcast_or_spatial_layers_);
|
|
RTC_CHECK(input_frame_reader);
|
|
RTC_CHECK(stats);
|
|
RTC_CHECK(!encoded_frame_writers ||
|
|
encoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
|
|
RTC_CHECK(!decoded_frame_writers ||
|
|
decoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
|
|
|
|
// Setup required callbacks for the encoder and decoder and initialize them.
|
|
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
|
|
RTC_CHECK_EQ(encoder_->InitEncode(&config_.codec_settings,
|
|
static_cast<int>(config_.NumberOfCores()),
|
|
config_.max_payload_size_bytes),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
|
|
for (auto& decoder : *decoders_) {
|
|
RTC_CHECK_EQ(decoder->InitDecode(&config_.codec_settings,
|
|
static_cast<int>(config_.NumberOfCores())),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
RTC_CHECK_EQ(decoder->RegisterDecodeCompleteCallback(&decode_callback_),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
}
|
|
}
|
|
|
|
VideoProcessor::~VideoProcessor() {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
|
|
encoder_->RegisterEncodeCompleteCallback(nullptr);
|
|
|
|
for (auto& decoder : *decoders_) {
|
|
RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK);
|
|
decoder->RegisterDecodeCompleteCallback(nullptr);
|
|
}
|
|
|
|
RTC_CHECK(last_encoded_frames_.empty());
|
|
}
|
|
|
|
void VideoProcessor::ProcessFrame() {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
const size_t frame_number = last_inputed_frame_num_++;
|
|
|
|
// Get frame from file.
|
|
rtc::scoped_refptr<I420BufferInterface> buffer(
|
|
input_frame_reader_->ReadFrame());
|
|
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
|
|
|
|
size_t rtp_timestamp =
|
|
(frame_number > 0) ? input_frames_[frame_number - 1]->timestamp() : 0;
|
|
rtp_timestamp +=
|
|
kVideoPayloadTypeFrequency / config_.codec_settings.maxFramerate;
|
|
|
|
input_frames_[frame_number] = rtc::MakeUnique<VideoFrame>(
|
|
buffer, static_cast<uint32_t>(rtp_timestamp),
|
|
static_cast<int64_t>(rtp_timestamp / kMsToRtpTimestamp),
|
|
webrtc::kVideoRotation_0);
|
|
|
|
std::vector<FrameType> frame_types = config_.FrameTypeForFrame(frame_number);
|
|
|
|
// Create frame statistics object for all simulcast /spatial layers.
|
|
for (size_t simulcast_svc_idx = 0;
|
|
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
|
|
++simulcast_svc_idx) {
|
|
stats_->at(simulcast_svc_idx).AddFrame(rtp_timestamp);
|
|
}
|
|
|
|
// For the highest measurement accuracy of the encode time, the start/stop
|
|
// time recordings should wrap the Encode call as tightly as possible.
|
|
const int64_t encode_start_ns = rtc::TimeNanos();
|
|
for (size_t simulcast_svc_idx = 0;
|
|
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
|
|
++simulcast_svc_idx) {
|
|
FrameStatistic* frame_stat =
|
|
stats_->at(simulcast_svc_idx).GetFrame(frame_number);
|
|
frame_stat->encode_start_ns = encode_start_ns;
|
|
}
|
|
|
|
const int encode_return_code =
|
|
encoder_->Encode(*input_frames_[frame_number], nullptr, &frame_types);
|
|
|
|
for (size_t simulcast_svc_idx = 0;
|
|
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
|
|
++simulcast_svc_idx) {
|
|
FrameStatistic* frame_stat =
|
|
stats_->at(simulcast_svc_idx).GetFrame(frame_number);
|
|
frame_stat->encode_return_code = encode_return_code;
|
|
}
|
|
|
|
// For async codecs frame decoding is done in frame encode callback.
|
|
if (!config_.IsAsyncCodec()) {
|
|
for (size_t simulcast_svc_idx = 0;
|
|
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
|
|
++simulcast_svc_idx) {
|
|
if (last_encoded_frames_.find(simulcast_svc_idx) !=
|
|
last_encoded_frames_.end()) {
|
|
EncodedImage& encoded_image = last_encoded_frames_[simulcast_svc_idx];
|
|
|
|
FrameStatistic* frame_stat =
|
|
stats_->at(simulcast_svc_idx).GetFrame(frame_number);
|
|
|
|
if (encoded_frame_writers_) {
|
|
RTC_CHECK(encoded_frame_writers_->at(simulcast_svc_idx)
|
|
->WriteFrame(encoded_image,
|
|
config_.codec_settings.codecType));
|
|
}
|
|
|
|
// For the highest measurement accuracy of the decode time, the
|
|
// start/stop time recordings should wrap the Decode call as tightly as
|
|
// possible.
|
|
frame_stat->decode_start_ns = rtc::TimeNanos();
|
|
frame_stat->decode_return_code =
|
|
decoders_->at(simulcast_svc_idx)
|
|
->Decode(encoded_image, false, nullptr);
|
|
|
|
RTC_CHECK(encoded_image._buffer);
|
|
delete[] encoded_image._buffer;
|
|
encoded_image._buffer = nullptr;
|
|
|
|
last_encoded_frames_.erase(simulcast_svc_idx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VideoProcessor::SetRates(size_t bitrate_kbps, size_t framerate_fps) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
config_.codec_settings.maxFramerate = static_cast<uint32_t>(framerate_fps);
|
|
bitrate_allocation_ = bitrate_allocator_->GetAllocation(
|
|
static_cast<uint32_t>(bitrate_kbps * 1000),
|
|
static_cast<uint32_t>(framerate_fps));
|
|
const int set_rates_result = encoder_->SetRateAllocation(
|
|
bitrate_allocation_, static_cast<uint32_t>(framerate_fps));
|
|
RTC_DCHECK_GE(set_rates_result, 0)
|
|
<< "Failed to update encoder with new rate " << bitrate_kbps << ".";
|
|
}
|
|
|
|
void VideoProcessor::FrameEncoded(
|
|
const webrtc::EncodedImage& encoded_image,
|
|
const webrtc::CodecSpecificInfo& codec_specific) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
// For the highest measurement accuracy of the encode time, the start/stop
|
|
// time recordings should wrap the Encode call as tightly as possible.
|
|
int64_t encode_stop_ns = rtc::TimeNanos();
|
|
|
|
const VideoCodecType codec = codec_specific.codecType;
|
|
if (config_.encoded_frame_checker) {
|
|
config_.encoded_frame_checker->CheckEncodedFrame(codec, encoded_image);
|
|
}
|
|
|
|
size_t simulcast_svc_idx = 0;
|
|
size_t temporal_idx = 0;
|
|
|
|
if (codec == kVideoCodecVP8) {
|
|
simulcast_svc_idx = codec_specific.codecSpecific.VP8.simulcastIdx;
|
|
temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx;
|
|
} else if (codec == kVideoCodecVP9) {
|
|
simulcast_svc_idx = codec_specific.codecSpecific.VP9.spatial_idx;
|
|
temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx;
|
|
}
|
|
|
|
if (simulcast_svc_idx == kNoSpatialIdx) {
|
|
simulcast_svc_idx = 0;
|
|
}
|
|
|
|
if (temporal_idx == kNoTemporalIdx) {
|
|
temporal_idx = 0;
|
|
}
|
|
|
|
const size_t frame_wxh =
|
|
encoded_image._encodedWidth * encoded_image._encodedHeight;
|
|
frame_wxh_to_simulcast_svc_idx_[frame_wxh] = simulcast_svc_idx;
|
|
|
|
FrameStatistic* frame_stat =
|
|
stats_->at(simulcast_svc_idx)
|
|
.GetFrameWithTimestamp(encoded_image._timeStamp);
|
|
const size_t frame_number = frame_stat->frame_number;
|
|
|
|
// Reordering is unexpected. Frames of different layers have the same value
|
|
// of frame_number. VP8 multi-res delivers frames starting from hires layer.
|
|
RTC_CHECK_GE(frame_number, last_encoded_frame_num_);
|
|
|
|
// Ensure SVC spatial layers are delivered in ascending order.
|
|
if (config_.NumberOfSpatialLayers() > 1) {
|
|
RTC_CHECK(simulcast_svc_idx > last_encoded_simulcast_svc_idx_ ||
|
|
frame_number != last_encoded_frame_num_ ||
|
|
num_encoded_frames_ == 0);
|
|
}
|
|
|
|
last_encoded_frame_num_ = frame_number;
|
|
last_encoded_simulcast_svc_idx_ = simulcast_svc_idx;
|
|
|
|
// Update frame statistics.
|
|
frame_stat->encoding_successful = true;
|
|
frame_stat->encode_time_us =
|
|
GetElapsedTimeMicroseconds(frame_stat->encode_start_ns, encode_stop_ns);
|
|
|
|
// TODO(ssilkin): Implement bitrate allocation for VP9 SVC. For now set
|
|
// target for base layers equal to total target to avoid devision by zero
|
|
// at analysis.
|
|
frame_stat->target_bitrate_kbps =
|
|
bitrate_allocation_.GetSpatialLayerSum(
|
|
codec == kVideoCodecVP9 ? 0 : simulcast_svc_idx) /
|
|
1000;
|
|
frame_stat->encoded_frame_size_bytes = encoded_image._length;
|
|
frame_stat->frame_type = encoded_image._frameType;
|
|
frame_stat->temporal_layer_idx = temporal_idx;
|
|
frame_stat->simulcast_svc_idx = simulcast_svc_idx;
|
|
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
|
|
frame_stat->qp = encoded_image.qp_;
|
|
|
|
if (!config_.IsAsyncCodec()) {
|
|
// Store encoded frame. It will be decoded after all layers are encoded.
|
|
CopyEncodedImage(encoded_image, codec, frame_number, simulcast_svc_idx);
|
|
} else {
|
|
const size_t simulcast_idx =
|
|
codec == kVideoCodecVP8 ? codec_specific.codecSpecific.VP8.simulcastIdx
|
|
: 0;
|
|
frame_stat->decode_start_ns = rtc::TimeNanos();
|
|
frame_stat->decode_return_code =
|
|
decoders_->at(simulcast_idx)->Decode(encoded_image, false, nullptr);
|
|
}
|
|
|
|
++num_encoded_frames_;
|
|
}
|
|
|
|
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
// For the highest measurement accuracy of the decode time, the start/stop
|
|
// time recordings should wrap the Decode call as tightly as possible.
|
|
int64_t decode_stop_ns = rtc::TimeNanos();
|
|
|
|
RTC_CHECK(frame_wxh_to_simulcast_svc_idx_.find(decoded_frame.size()) !=
|
|
frame_wxh_to_simulcast_svc_idx_.end());
|
|
const size_t simulcast_svc_idx =
|
|
frame_wxh_to_simulcast_svc_idx_[decoded_frame.size()];
|
|
|
|
FrameStatistic* frame_stat =
|
|
stats_->at(simulcast_svc_idx)
|
|
.GetFrameWithTimestamp(decoded_frame.timestamp());
|
|
const size_t frame_number = frame_stat->frame_number;
|
|
|
|
// Reordering is unexpected. Frames of different layers have the same value
|
|
// of frame_number.
|
|
RTC_CHECK_GE(frame_number, last_decoded_frame_num_);
|
|
|
|
if (decoded_frame_writers_ && num_decoded_frames_ > 0) {
|
|
// For dropped frames, write out the last decoded frame to make it look like
|
|
// a freeze at playback.
|
|
for (size_t num_dropped_frames = 0; num_dropped_frames < frame_number;
|
|
++num_dropped_frames) {
|
|
const FrameStatistic* prev_frame_stat =
|
|
stats_->at(simulcast_svc_idx)
|
|
.GetFrame(frame_number - num_dropped_frames - 1);
|
|
if (prev_frame_stat->decoding_successful) {
|
|
break;
|
|
}
|
|
WriteDecodedFrameToFile(&last_decoded_frame_buffers_[simulcast_svc_idx],
|
|
simulcast_svc_idx);
|
|
}
|
|
}
|
|
|
|
last_decoded_frame_num_ = frame_number;
|
|
|
|
// Update frame statistics.
|
|
frame_stat->decoding_successful = true;
|
|
frame_stat->decode_time_us =
|
|
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
|
|
frame_stat->decoded_width = decoded_frame.width();
|
|
frame_stat->decoded_height = decoded_frame.height();
|
|
|
|
// Skip quality metrics calculation to not affect CPU usage.
|
|
if (!config_.measure_cpu) {
|
|
CalculateFrameQuality(*input_frames_[frame_number], decoded_frame,
|
|
frame_stat);
|
|
}
|
|
|
|
// Delay erasing of input frames by one frame. The current frame might
|
|
// still be needed for other simulcast stream or spatial layer.
|
|
if (frame_number > 0) {
|
|
auto input_frame_erase_to = input_frames_.lower_bound(frame_number - 1);
|
|
input_frames_.erase(input_frames_.begin(), input_frame_erase_to);
|
|
}
|
|
|
|
if (decoded_frame_writers_) {
|
|
ExtractBufferWithSize(decoded_frame, config_.codec_settings.width,
|
|
config_.codec_settings.height,
|
|
&last_decoded_frame_buffers_[simulcast_svc_idx]);
|
|
WriteDecodedFrameToFile(&last_decoded_frame_buffers_[simulcast_svc_idx],
|
|
simulcast_svc_idx);
|
|
}
|
|
|
|
++num_decoded_frames_;
|
|
}
|
|
|
|
void VideoProcessor::CopyEncodedImage(const EncodedImage& encoded_image,
|
|
const VideoCodecType codec,
|
|
size_t frame_number,
|
|
size_t simulcast_svc_idx) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
EncodedImage base_image;
|
|
RTC_CHECK_EQ(base_image._length, 0);
|
|
|
|
// Each SVC layer is decoded with dedicated decoder. Add data of base layers
|
|
// to current coded frame buffer.
|
|
if (config_.NumberOfSpatialLayers() > 1 && simulcast_svc_idx > 0) {
|
|
RTC_CHECK(last_encoded_frames_.find(simulcast_svc_idx - 1) !=
|
|
last_encoded_frames_.end());
|
|
base_image = last_encoded_frames_[simulcast_svc_idx - 1];
|
|
}
|
|
|
|
const size_t payload_size_bytes = base_image._length + encoded_image._length;
|
|
const size_t buffer_size_bytes =
|
|
payload_size_bytes + EncodedImage::GetBufferPaddingBytes(codec);
|
|
|
|
uint8_t* copied_buffer = new uint8_t[buffer_size_bytes];
|
|
RTC_CHECK(copied_buffer);
|
|
|
|
if (base_image._length) {
|
|
memcpy(copied_buffer, base_image._buffer, base_image._length);
|
|
}
|
|
|
|
memcpy(copied_buffer + base_image._length, encoded_image._buffer,
|
|
encoded_image._length);
|
|
|
|
EncodedImage copied_image = encoded_image;
|
|
copied_image = encoded_image;
|
|
copied_image._buffer = copied_buffer;
|
|
copied_image._length = payload_size_bytes;
|
|
copied_image._size = buffer_size_bytes;
|
|
|
|
last_encoded_frames_[simulcast_svc_idx] = copied_image;
|
|
}
|
|
|
|
void VideoProcessor::CalculateFrameQuality(const VideoFrame& ref_frame,
|
|
const VideoFrame& dec_frame,
|
|
FrameStatistic* frame_stat) {
|
|
if (ref_frame.width() == dec_frame.width() ||
|
|
ref_frame.height() == dec_frame.height()) {
|
|
frame_stat->psnr = I420PSNR(&ref_frame, &dec_frame);
|
|
frame_stat->ssim = I420SSIM(&ref_frame, &dec_frame);
|
|
} else {
|
|
RTC_CHECK_GE(ref_frame.width(), dec_frame.width());
|
|
RTC_CHECK_GE(ref_frame.height(), dec_frame.height());
|
|
// Downscale reference frame. Use bilinear interpolation since it is used
|
|
// to get lowres inputs for encoder at simulcasting.
|
|
// TODO(ssilkin): Sync with VP9 SVC which uses 8-taps polyphase.
|
|
rtc::scoped_refptr<I420Buffer> scaled_buffer =
|
|
I420Buffer::Create(dec_frame.width(), dec_frame.height());
|
|
const I420BufferInterface& ref_buffer =
|
|
*ref_frame.video_frame_buffer()->ToI420();
|
|
I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(),
|
|
ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(),
|
|
ref_buffer.width(), ref_buffer.height(),
|
|
scaled_buffer->MutableDataY(), scaled_buffer->StrideY(),
|
|
scaled_buffer->MutableDataU(), scaled_buffer->StrideU(),
|
|
scaled_buffer->MutableDataV(), scaled_buffer->StrideV(),
|
|
scaled_buffer->width(), scaled_buffer->height(),
|
|
libyuv::kFilterBilinear);
|
|
frame_stat->psnr =
|
|
I420PSNR(*scaled_buffer, *dec_frame.video_frame_buffer()->ToI420());
|
|
frame_stat->ssim =
|
|
I420SSIM(*scaled_buffer, *dec_frame.video_frame_buffer()->ToI420());
|
|
}
|
|
}
|
|
|
|
void VideoProcessor::WriteDecodedFrameToFile(rtc::Buffer* buffer,
|
|
size_t simulcast_svc_idx) {
|
|
RTC_CHECK(simulcast_svc_idx < decoded_frame_writers_->size());
|
|
RTC_DCHECK_EQ(buffer->size(),
|
|
decoded_frame_writers_->at(simulcast_svc_idx)->FrameLength());
|
|
RTC_CHECK(decoded_frame_writers_->at(simulcast_svc_idx)
|
|
->WriteFrame(buffer->data()));
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|