webrtc_m130/modules/video_coding/utility/vp9_uncompressed_header_parser.cc
Björn Terelius a77e16ca2c Update BitBuffer methods to style guide
Specifically, use reference instead of pointer for out parameter
and place the out parameter last, for the following methods

ReadUInt8
ReadUInt16
ReadUInt32
ReadBits
PeekBits
ReadNonSymmetric
ReadSignedExponentialGolomb
ReadExponentialGolomb

Bug: webrtc:11933
Change-Id: I3f1efe3e29155985277b0cd18700ddea25fe7914
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/218504
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34037}
2021-05-18 11:10:27 +00:00

521 lines
16 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/utility/vp9_uncompressed_header_parser.h"
#include "absl/strings/string_view.h"
#include "rtc_base/bit_buffer.h"
#include "rtc_base/logging.h"
namespace webrtc {
// Evaluates x and returns false if false.
#define RETURN_IF_FALSE(x) \
if (!(x)) { \
return false; \
}
// Evaluates x, which is intended to return an optional. If result is nullopt,
// returns false. Else, calls fun() with the dereferenced optional as parameter.
#define READ_OR_RETURN(x, fun) \
do { \
if (auto optional_val = (x)) { \
fun(*optional_val); \
} else { \
return false; \
} \
} while (false)
namespace vp9 {
namespace {
const size_t kVp9NumRefsPerFrame = 3;
const size_t kVp9MaxRefLFDeltas = 4;
const size_t kVp9MaxModeLFDeltas = 2;
const size_t kVp9MinTileWidthB64 = 4;
const size_t kVp9MaxTileWidthB64 = 64;
class BitstreamReader {
public:
explicit BitstreamReader(rtc::BitBuffer* buffer) : buffer_(buffer) {}
// Reads on bit from the input stream and:
// * returns false if bit cannot be read
// * calls f_true() if bit is true, returns return value of that function
// * calls f_else() if bit is false, returns return value of that function
bool IfNextBoolean(
std::function<bool()> f_true,
std::function<bool()> f_false = [] { return true; }) {
uint32_t val;
if (!buffer_->ReadBits(1, val)) {
return false;
}
if (val != 0) {
return f_true();
}
return f_false();
}
absl::optional<bool> ReadBoolean() {
uint32_t val;
if (!buffer_->ReadBits(1, val)) {
return {};
}
return {val != 0};
}
// Reads a bit from the input stream and returns:
// * false if bit cannot be read
// * true if bit matches expected_val
// * false if bit does not match expected_val - in which case |error_msg| is
// logged as warning, if provided.
bool VerifyNextBooleanIs(bool expected_val, absl::string_view error_msg) {
uint32_t val;
if (!buffer_->ReadBits(1, val)) {
return false;
}
if ((val != 0) != expected_val) {
if (!error_msg.empty()) {
RTC_LOG(LS_WARNING) << error_msg;
}
return false;
}
return true;
}
// Reads |bits| bits from the bitstream and interprets them as an unsigned
// integer that gets cast to the type T before returning.
// Returns nullopt if all bits cannot be read.
// If number of bits matches size of data type, the bits parameter may be
// omitted. Ex:
// ReadUnsigned<uint8_t>(2); // Returns uint8_t with 2 LSB populated.
// ReadUnsigned<uint8_t>(); // Returns uint8_t with all 8 bits populated.
template <typename T>
absl::optional<T> ReadUnsigned(int bits = sizeof(T) * 8) {
RTC_DCHECK_LE(bits, 32);
RTC_DCHECK_LE(bits, sizeof(T) * 8);
uint32_t val;
if (!buffer_->ReadBits(bits, val)) {
return {};
}
return (static_cast<T>(val));
}
// Helper method that reads |num_bits| from the bitstream, returns:
// * false if bits cannot be read.
// * true if |expected_val| matches the read bits
// * false if |expected_val| does not match the read bits, and logs
// |error_msg| as a warning (if provided).
bool VerifyNextUnsignedIs(int num_bits,
uint32_t expected_val,
absl::string_view error_msg) {
uint32_t val;
if (!buffer_->ReadBits(num_bits, val)) {
return false;
}
if (val != expected_val) {
if (!error_msg.empty()) {
RTC_LOG(LS_WARNING) << error_msg;
}
return false;
}
return true;
}
// Basically the same as ReadUnsigned() - but for signed integers.
// Here |bits| indicates the size of the value - number of bits read from the
// bit buffer is one higher (the sign bit). This is made to matche the spec in
// which eg s(4) = f(1) sign-bit, plus an f(4).
template <typename T>
absl::optional<T> ReadSigned(int bits = sizeof(T) * 8) {
uint32_t sign;
if (!buffer_->ReadBits(1, sign)) {
return {};
}
uint32_t val;
if (!buffer_->ReadBits(bits, val)) {
return {};
}
int64_t sign_val = val;
if (sign != 0) {
sign_val = -sign_val;
}
return {static_cast<T>(sign_val)};
}
// Reads |bits| from the bitstream, disregarding their value.
// Returns true if full number of bits were read, false otherwise.
bool ConsumeBits(int bits) { return buffer_->ConsumeBits(bits); }
private:
rtc::BitBuffer* buffer_;
};
bool Vp9ReadColorConfig(BitstreamReader* br, FrameInfo* frame_info) {
if (frame_info->profile == 2 || frame_info->profile == 3) {
READ_OR_RETURN(br->ReadBoolean(), [frame_info](bool ten_or_twelve_bits) {
frame_info->bit_detph =
ten_or_twelve_bits ? BitDept::k12Bit : BitDept::k10Bit;
});
} else {
frame_info->bit_detph = BitDept::k8Bit;
}
READ_OR_RETURN(
br->ReadUnsigned<uint8_t>(3), [frame_info](uint8_t color_space) {
frame_info->color_space = static_cast<ColorSpace>(color_space);
});
if (frame_info->color_space != ColorSpace::CS_RGB) {
READ_OR_RETURN(br->ReadBoolean(), [frame_info](bool color_range) {
frame_info->color_range =
color_range ? ColorRange::kFull : ColorRange::kStudio;
});
if (frame_info->profile == 1 || frame_info->profile == 3) {
READ_OR_RETURN(br->ReadUnsigned<uint8_t>(2),
[frame_info](uint8_t subsampling) {
switch (subsampling) {
case 0b00:
frame_info->sub_sampling = YuvSubsampling::k444;
break;
case 0b01:
frame_info->sub_sampling = YuvSubsampling::k440;
break;
case 0b10:
frame_info->sub_sampling = YuvSubsampling::k422;
break;
case 0b11:
frame_info->sub_sampling = YuvSubsampling::k420;
break;
}
});
RETURN_IF_FALSE(br->VerifyNextBooleanIs(
0, "Failed to parse header. Reserved bit set."));
} else {
// Profile 0 or 2.
frame_info->sub_sampling = YuvSubsampling::k420;
}
} else {
// SRGB
frame_info->color_range = ColorRange::kFull;
if (frame_info->profile == 1 || frame_info->profile == 3) {
frame_info->sub_sampling = YuvSubsampling::k444;
RETURN_IF_FALSE(br->VerifyNextBooleanIs(
0, "Failed to parse header. Reserved bit set."));
} else {
RTC_LOG(LS_WARNING) << "Failed to parse header. 4:4:4 color not supported"
" in profile 0 or 2.";
return false;
}
}
return true;
}
bool Vp9ReadFrameSize(BitstreamReader* br, FrameInfo* frame_info) {
// 16 bits: frame (width|height) - 1.
READ_OR_RETURN(br->ReadUnsigned<uint16_t>(), [frame_info](uint16_t width) {
frame_info->frame_width = width + 1;
});
READ_OR_RETURN(br->ReadUnsigned<uint16_t>(), [frame_info](uint16_t height) {
frame_info->frame_height = height + 1;
});
return true;
}
bool Vp9ReadRenderSize(BitstreamReader* br, FrameInfo* frame_info) {
// render_and_frame_size_different
return br->IfNextBoolean(
[&] {
// 16 bits: render (width|height) - 1.
READ_OR_RETURN(br->ReadUnsigned<uint16_t>(),
[frame_info](uint16_t width) {
frame_info->render_width = width + 1;
});
READ_OR_RETURN(br->ReadUnsigned<uint16_t>(),
[frame_info](uint16_t height) {
frame_info->render_height = height + 1;
});
return true;
},
/*else*/
[&] {
frame_info->render_height = frame_info->frame_height;
frame_info->render_width = frame_info->frame_width;
return true;
});
}
bool Vp9ReadFrameSizeFromRefs(BitstreamReader* br, FrameInfo* frame_info) {
bool found_ref = false;
for (size_t i = 0; !found_ref && i < kVp9NumRefsPerFrame; i++) {
// Size in refs.
READ_OR_RETURN(br->ReadBoolean(), [&](bool ref) { found_ref = ref; });
}
if (!found_ref) {
if (!Vp9ReadFrameSize(br, frame_info)) {
return false;
}
}
return Vp9ReadRenderSize(br, frame_info);
}
bool Vp9ReadLoopfilter(BitstreamReader* br) {
// 6 bits: filter level.
// 3 bits: sharpness level.
RETURN_IF_FALSE(br->ConsumeBits(9));
return br->IfNextBoolean([&] { // if mode_ref_delta_enabled
return br->IfNextBoolean([&] { // if mode_ref_delta_update
for (size_t i = 0; i < kVp9MaxRefLFDeltas; i++) {
RETURN_IF_FALSE(br->IfNextBoolean([&] { return br->ConsumeBits(7); }));
}
for (size_t i = 0; i < kVp9MaxModeLFDeltas; i++) {
RETURN_IF_FALSE(br->IfNextBoolean([&] { return br->ConsumeBits(7); }));
}
return true;
});
});
}
bool Vp9ReadQp(BitstreamReader* br, FrameInfo* frame_info) {
READ_OR_RETURN(br->ReadUnsigned<uint8_t>(),
[frame_info](uint8_t qp) { frame_info->base_qp = qp; });
// yuv offsets
for (int i = 0; i < 3; ++i) {
RETURN_IF_FALSE(br->IfNextBoolean([br] { // if delta_coded
return br->ConsumeBits(5);
}));
}
return true;
}
bool Vp9ReadSegmentationParams(BitstreamReader* br) {
constexpr int kVp9MaxSegments = 8;
constexpr int kVp9SegLvlMax = 4;
constexpr int kSegmentationFeatureBits[kVp9SegLvlMax] = {8, 6, 2, 0};
constexpr bool kSegmentationFeatureSigned[kVp9SegLvlMax] = {1, 1, 0, 0};
return br->IfNextBoolean([&] { // segmentation_enabled
return br->IfNextBoolean([&] { // update_map
// Consume probs.
for (int i = 0; i < 7; ++i) {
RETURN_IF_FALSE(br->IfNextBoolean([br] { return br->ConsumeBits(7); }));
}
return br->IfNextBoolean([&] { // temporal_update
// Consume probs.
for (int i = 0; i < 3; ++i) {
RETURN_IF_FALSE(
br->IfNextBoolean([br] { return br->ConsumeBits(7); }));
}
return true;
});
});
});
return br->IfNextBoolean([&] {
RETURN_IF_FALSE(br->ConsumeBits(1)); // abs_or_delta
for (int i = 0; i < kVp9MaxSegments; ++i) {
for (int j = 0; j < kVp9SegLvlMax; ++j) {
RETURN_IF_FALSE(br->IfNextBoolean([&] { // feature_enabled
return br->ConsumeBits(kSegmentationFeatureBits[j] +
kSegmentationFeatureSigned[j]);
}));
}
}
return true;
});
}
bool Vp9ReadTileInfo(BitstreamReader* br, FrameInfo* frame_info) {
size_t mi_cols = (frame_info->frame_width + 7) >> 3;
size_t sb64_cols = (mi_cols + 7) >> 3;
size_t min_log2 = 0;
while ((kVp9MaxTileWidthB64 << min_log2) < sb64_cols) {
++min_log2;
}
size_t max_log2 = 1;
while ((sb64_cols >> max_log2) >= kVp9MinTileWidthB64) {
++max_log2;
}
--max_log2;
size_t cols_log2 = min_log2;
bool done = false;
while (!done && cols_log2 < max_log2) {
RETURN_IF_FALSE(br->IfNextBoolean(
[&] {
++cols_log2;
return true;
},
[&] {
done = true;
return true;
}));
}
// rows_log2;
return br->IfNextBoolean([&] { return br->ConsumeBits(1); });
}
} // namespace
bool Parse(const uint8_t* buf, size_t length, FrameInfo* frame_info) {
rtc::BitBuffer bit_buffer(buf, length);
BitstreamReader br(&bit_buffer);
// Frame marker.
RETURN_IF_FALSE(br.VerifyNextUnsignedIs(
2, 0x2, "Failed to parse header. Frame marker should be 2."));
// Profile has low bit first.
READ_OR_RETURN(br.ReadBoolean(),
[frame_info](bool low) { frame_info->profile = int{low}; });
READ_OR_RETURN(br.ReadBoolean(), [frame_info](bool high) {
frame_info->profile |= int{high} << 1;
});
if (frame_info->profile > 2) {
RETURN_IF_FALSE(br.VerifyNextBooleanIs(
false, "Failed to get QP. Unsupported bitstream profile."));
}
// Show existing frame.
RETURN_IF_FALSE(br.IfNextBoolean([&] {
READ_OR_RETURN(br.ReadUnsigned<uint8_t>(3),
[frame_info](uint8_t frame_idx) {
frame_info->show_existing_frame = frame_idx;
});
return true;
}));
if (frame_info->show_existing_frame.has_value()) {
return true;
}
READ_OR_RETURN(br.ReadBoolean(), [frame_info](bool frame_type) {
// Frame type: KEY_FRAME(0), INTER_FRAME(1).
frame_info->is_keyframe = frame_type == 0;
});
READ_OR_RETURN(br.ReadBoolean(), [frame_info](bool show_frame) {
frame_info->show_frame = show_frame;
});
READ_OR_RETURN(br.ReadBoolean(), [frame_info](bool error_resilient) {
frame_info->error_resilient = error_resilient;
});
if (frame_info->is_keyframe) {
RETURN_IF_FALSE(br.VerifyNextUnsignedIs(
24, 0x498342, "Failed to get QP. Invalid sync code."));
if (!Vp9ReadColorConfig(&br, frame_info))
return false;
if (!Vp9ReadFrameSize(&br, frame_info))
return false;
if (!Vp9ReadRenderSize(&br, frame_info))
return false;
} else {
// Non-keyframe.
bool is_intra_only = false;
if (!frame_info->show_frame) {
READ_OR_RETURN(br.ReadBoolean(),
[&](bool intra_only) { is_intra_only = intra_only; });
}
if (!frame_info->error_resilient) {
RETURN_IF_FALSE(br.ConsumeBits(2)); // Reset frame context.
}
if (is_intra_only) {
RETURN_IF_FALSE(br.VerifyNextUnsignedIs(
24, 0x498342, "Failed to get QP. Invalid sync code."));
if (frame_info->profile > 0) {
if (!Vp9ReadColorConfig(&br, frame_info))
return false;
}
// Refresh frame flags.
RETURN_IF_FALSE(br.ConsumeBits(8));
if (!Vp9ReadFrameSize(&br, frame_info))
return false;
if (!Vp9ReadRenderSize(&br, frame_info))
return false;
} else {
// Refresh frame flags.
RETURN_IF_FALSE(br.ConsumeBits(8));
for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) {
// 3 bits: Ref frame index.
// 1 bit: Ref frame sign biases.
RETURN_IF_FALSE(br.ConsumeBits(4));
}
if (!Vp9ReadFrameSizeFromRefs(&br, frame_info))
return false;
// Allow high precision mv.
RETURN_IF_FALSE(br.ConsumeBits(1));
// Interpolation filter.
RETURN_IF_FALSE(br.IfNextBoolean([] { return true; },
[&br] { return br.ConsumeBits(2); }));
}
}
if (!frame_info->error_resilient) {
// 1 bit: Refresh frame context.
// 1 bit: Frame parallel decoding mode.
RETURN_IF_FALSE(br.ConsumeBits(2));
}
// Frame context index.
RETURN_IF_FALSE(br.ConsumeBits(2));
if (!Vp9ReadLoopfilter(&br))
return false;
// Read base QP.
RETURN_IF_FALSE(Vp9ReadQp(&br, frame_info));
const bool kParseFullHeader = false;
if (kParseFullHeader) {
// Currently not used, but will be needed when parsing beyond the
// uncompressed header.
RETURN_IF_FALSE(Vp9ReadSegmentationParams(&br));
RETURN_IF_FALSE(Vp9ReadTileInfo(&br, frame_info));
RETURN_IF_FALSE(br.ConsumeBits(16)); // header_size_in_bytes
}
return true;
}
bool GetQp(const uint8_t* buf, size_t length, int* qp) {
FrameInfo frame_info;
if (!Parse(buf, length, &frame_info)) {
return false;
}
*qp = frame_info.base_qp;
return true;
}
absl::optional<FrameInfo> ParseIntraFrameInfo(const uint8_t* buf,
size_t length) {
FrameInfo frame_info;
if (Parse(buf, length, &frame_info) && frame_info.frame_width > 0) {
return frame_info;
}
return absl::nullopt;
}
} // namespace vp9
} // namespace webrtc