Per Åhgren d4e6904d40 AEC3: Reducing the complexity and heap usage of the adaptive filter
This CL reduces the complexity and heap usage of the adaptive filter
in AEC3 by avoiding to compute these for the shadow
filter. In particular it
-Moves to compute the ERL, frequency response and impulse response
 on an on-demand basis.
-Stores the ERL, frequency response and impulse response outside
 of the adaptive filter.

All the changes have been tested for bitexactness on a sizeable
amount of recordings.

Bug: webrtc:10913
Change-Id: If83c236a6e3f2e489be129b9ebf6143a72f521d1
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/151138
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29081}
2019-09-05 14:30:49 +00:00

282 lines
10 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <utility>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
void PredictionError(const Aec3Fft& fft,
const FftData& S,
rtc::ArrayView<const float> y,
std::array<float, kBlockSize>* e,
std::array<float, kBlockSize>* s) {
std::array<float, kFftLength> tmp;
fft.Ifft(S, &tmp);
constexpr float kScale = 1.0f / kFftLengthBy2;
std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(),
[&](float a, float b) { return a - b * kScale; });
if (s) {
for (size_t k = 0; k < s->size(); ++k) {
(*s)[k] = kScale * tmp[k + kFftLengthBy2];
}
}
}
void ScaleFilterOutput(rtc::ArrayView<const float> y,
float factor,
rtc::ArrayView<float> e,
rtc::ArrayView<float> s) {
RTC_DCHECK_EQ(y.size(), e.size());
RTC_DCHECK_EQ(y.size(), s.size());
for (size_t k = 0; k < y.size(); ++k) {
s[k] *= factor;
e[k] = y[k] - s[k];
}
}
} // namespace
Subtractor::Subtractor(const EchoCanceller3Config& config,
size_t num_render_channels,
size_t num_capture_channels,
ApmDataDumper* data_dumper,
Aec3Optimization optimization)
: fft_(),
data_dumper_(data_dumper),
optimization_(optimization),
config_(config),
main_filter_(config_.filter.main.length_blocks,
config_.filter.main_initial.length_blocks,
config.filter.config_change_duration_blocks,
num_render_channels,
num_capture_channels,
optimization,
data_dumper_),
shadow_filter_(config_.filter.shadow.length_blocks,
config_.filter.shadow_initial.length_blocks,
config.filter.config_change_duration_blocks,
num_render_channels,
num_capture_channels,
optimization,
data_dumper_),
G_main_(config_.filter.main_initial,
config_.filter.config_change_duration_blocks),
G_shadow_(config_.filter.shadow_initial,
config.filter.config_change_duration_blocks),
main_frequency_response_(main_filter_.max_filter_size_partitions(),
std::array<float, kFftLengthBy2Plus1>()),
main_impulse_response_(
GetTimeDomainLength(main_filter_.max_filter_size_partitions()),
0.f) {
RTC_DCHECK(data_dumper_);
for (auto& H2_k : main_frequency_response_) {
H2_k.fill(0.f);
}
}
Subtractor::~Subtractor() = default;
void Subtractor::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
main_filter_.HandleEchoPathChange();
shadow_filter_.HandleEchoPathChange();
G_main_.HandleEchoPathChange(echo_path_variability);
G_shadow_.HandleEchoPathChange();
G_main_.SetConfig(config_.filter.main_initial, true);
G_shadow_.SetConfig(config_.filter.shadow_initial, true);
main_filter_.SetSizePartitions(config_.filter.main_initial.length_blocks,
true);
shadow_filter_.SetSizePartitions(
config_.filter.shadow_initial.length_blocks, true);
};
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
}
if (echo_path_variability.gain_change) {
G_main_.HandleEchoPathChange(echo_path_variability);
}
}
void Subtractor::ExitInitialState() {
G_main_.SetConfig(config_.filter.main, false);
G_shadow_.SetConfig(config_.filter.shadow, false);
main_filter_.SetSizePartitions(config_.filter.main.length_blocks, false);
shadow_filter_.SetSizePartitions(config_.filter.shadow.length_blocks, false);
}
void Subtractor::Process(const RenderBuffer& render_buffer,
const rtc::ArrayView<const float> capture,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
SubtractorOutput* output) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
rtc::ArrayView<const float> y = capture;
FftData& E_main = output->E_main;
FftData E_shadow;
std::array<float, kBlockSize>& e_main = output->e_main;
std::array<float, kBlockSize>& e_shadow = output->e_shadow;
FftData S;
FftData& G = S;
// Form the outputs of the main and shadow filters.
main_filter_.Filter(render_buffer, &S);
PredictionError(fft_, S, y, &e_main, &output->s_main);
shadow_filter_.Filter(render_buffer, &S);
PredictionError(fft_, S, y, &e_shadow, &output->s_shadow);
// Compute the signal powers in the subtractor output.
output->ComputeMetrics(y);
// Adjust the filter if needed.
bool main_filter_adjusted = false;
filter_misadjustment_estimator_.Update(*output);
if (filter_misadjustment_estimator_.IsAdjustmentNeeded()) {
float scale = filter_misadjustment_estimator_.GetMisadjustment();
main_filter_.ScaleFilter(scale);
for (auto& h_k : main_impulse_response_) {
h_k *= scale;
}
ScaleFilterOutput(y, scale, e_main, output->s_main);
filter_misadjustment_estimator_.Reset();
main_filter_adjusted = true;
}
// Compute the FFts of the main and shadow filter outputs.
fft_.ZeroPaddedFft(e_main, Aec3Fft::Window::kHanning, &E_main);
fft_.ZeroPaddedFft(e_shadow, Aec3Fft::Window::kHanning, &E_shadow);
// Compute spectra for future use.
E_shadow.Spectrum(optimization_, output->E2_shadow);
E_main.Spectrum(optimization_, output->E2_main);
// Compute the render powers.
std::array<float, kFftLengthBy2Plus1> X2_main;
std::array<float, kFftLengthBy2Plus1> X2_shadow_data;
std::array<float, kFftLengthBy2Plus1>& X2_shadow =
main_filter_.SizePartitions() == shadow_filter_.SizePartitions()
? X2_main
: X2_shadow_data;
if (main_filter_.SizePartitions() == shadow_filter_.SizePartitions()) {
render_buffer.SpectralSum(main_filter_.SizePartitions(), &X2_main);
} else if (main_filter_.SizePartitions() > shadow_filter_.SizePartitions()) {
render_buffer.SpectralSums(shadow_filter_.SizePartitions(),
main_filter_.SizePartitions(), &X2_shadow,
&X2_main);
} else {
render_buffer.SpectralSums(main_filter_.SizePartitions(),
shadow_filter_.SizePartitions(), &X2_main,
&X2_shadow);
}
// Update the main filter.
if (!main_filter_adjusted) {
std::array<float, kFftLengthBy2Plus1> erl;
ComputeErl(optimization_, main_frequency_response_, erl);
G_main_.Compute(X2_main, render_signal_analyzer, *output, erl,
main_filter_.SizePartitions(), aec_state.SaturatedCapture(),
&G);
} else {
G.re.fill(0.f);
G.im.fill(0.f);
}
main_filter_.Adapt(render_buffer, G, &main_impulse_response_);
main_filter_.ComputeFrequencyResponse(&main_frequency_response_);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im);
// Update the shadow filter.
poor_shadow_filter_counter_ =
output->e2_main < output->e2_shadow ? poor_shadow_filter_counter_ + 1 : 0;
if (poor_shadow_filter_counter_ < 5) {
G_shadow_.Compute(X2_shadow, render_signal_analyzer, E_shadow,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture(), &G);
} else {
poor_shadow_filter_counter_ = 0;
shadow_filter_.SetFilter(main_filter_.GetFilter());
G_shadow_.Compute(X2_shadow, render_signal_analyzer, E_main,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture(), &G);
}
shadow_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im);
filter_misadjustment_estimator_.Dump(data_dumper_);
DumpFilters();
std::for_each(e_main.begin(), e_main.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
data_dumper_->DumpWav("aec3_main_filter_output", kBlockSize, &e_main[0],
16000, 1);
data_dumper_->DumpWav("aec3_shadow_filter_output", kBlockSize, &e_shadow[0],
16000, 1);
}
void Subtractor::FilterMisadjustmentEstimator::Update(
const SubtractorOutput& output) {
e2_acum_ += output.e2_main;
y2_acum_ += output.y2;
if (++n_blocks_acum_ == n_blocks_) {
if (y2_acum_ > n_blocks_ * 200.f * 200.f * kBlockSize) {
float update = (e2_acum_ / y2_acum_);
if (e2_acum_ > n_blocks_ * 7500.f * 7500.f * kBlockSize) {
// Duration equal to blockSizeMs * n_blocks_ * 4.
overhang_ = 4;
} else {
overhang_ = std::max(overhang_ - 1, 0);
}
if ((update < inv_misadjustment_) || (overhang_ > 0)) {
inv_misadjustment_ += 0.1f * (update - inv_misadjustment_);
}
}
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
}
}
void Subtractor::FilterMisadjustmentEstimator::Reset() {
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
inv_misadjustment_ = 0.f;
overhang_ = 0.f;
}
void Subtractor::FilterMisadjustmentEstimator::Dump(
ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_inv_misadjustment_factor", inv_misadjustment_);
}
} // namespace webrtc