webrtc_m130/api/audio/echo_canceller3_config.cc
Per Åhgren 9136abb45a AEC3: Ensure that the data size in the reverb computer is not fixed
This CL ensures that the no data vectors in the reverb computer code
are fixed. This allows arbitrary long filters to be used, and ensures
that a minimum required heap size is used.

Bug: webrtc:8671
Change-Id: I7085ed262a3f5965d796270434b6578f4030606e
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/162661
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30115}
2019-12-19 16:35:56 +00:00

268 lines
11 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/audio/echo_canceller3_config.h"
#include <algorithm>
#include <cmath>
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
bool Limit(float* value, float min, float max) {
float clamped = rtc::SafeClamp(*value, min, max);
clamped = std::isfinite(clamped) ? clamped : min;
bool res = *value == clamped;
*value = clamped;
return res;
}
bool Limit(size_t* value, size_t min, size_t max) {
size_t clamped = rtc::SafeClamp(*value, min, max);
bool res = *value == clamped;
*value = clamped;
return res;
}
bool Limit(int* value, int min, int max) {
int clamped = rtc::SafeClamp(*value, min, max);
bool res = *value == clamped;
*value = clamped;
return res;
}
bool FloorLimit(size_t* value, size_t min) {
size_t clamped = *value >= min ? *value : min;
bool res = *value == clamped;
*value = clamped;
return res;
}
} // namespace
EchoCanceller3Config::EchoCanceller3Config() = default;
EchoCanceller3Config::EchoCanceller3Config(const EchoCanceller3Config& e) =
default;
EchoCanceller3Config& EchoCanceller3Config::operator=(
const EchoCanceller3Config& e) = default;
EchoCanceller3Config::Delay::Delay() = default;
EchoCanceller3Config::Delay::Delay(const EchoCanceller3Config::Delay& e) =
default;
EchoCanceller3Config::Delay& EchoCanceller3Config::Delay::operator=(
const Delay& e) = default;
EchoCanceller3Config::EchoModel::EchoModel() = default;
EchoCanceller3Config::EchoModel::EchoModel(
const EchoCanceller3Config::EchoModel& e) = default;
EchoCanceller3Config::EchoModel& EchoCanceller3Config::EchoModel::operator=(
const EchoModel& e) = default;
EchoCanceller3Config::Suppressor::Suppressor() = default;
EchoCanceller3Config::Suppressor::Suppressor(
const EchoCanceller3Config::Suppressor& e) = default;
EchoCanceller3Config::Suppressor& EchoCanceller3Config::Suppressor::operator=(
const Suppressor& e) = default;
EchoCanceller3Config::Suppressor::MaskingThresholds::MaskingThresholds(
float enr_transparent,
float enr_suppress,
float emr_transparent)
: enr_transparent(enr_transparent),
enr_suppress(enr_suppress),
emr_transparent(emr_transparent) {}
EchoCanceller3Config::Suppressor::MaskingThresholds::MaskingThresholds(
const EchoCanceller3Config::Suppressor::MaskingThresholds& e) = default;
EchoCanceller3Config::Suppressor::MaskingThresholds&
EchoCanceller3Config::Suppressor::MaskingThresholds::operator=(
const MaskingThresholds& e) = default;
EchoCanceller3Config::Suppressor::Tuning::Tuning(MaskingThresholds mask_lf,
MaskingThresholds mask_hf,
float max_inc_factor,
float max_dec_factor_lf)
: mask_lf(mask_lf),
mask_hf(mask_hf),
max_inc_factor(max_inc_factor),
max_dec_factor_lf(max_dec_factor_lf) {}
EchoCanceller3Config::Suppressor::Tuning::Tuning(
const EchoCanceller3Config::Suppressor::Tuning& e) = default;
EchoCanceller3Config::Suppressor::Tuning&
EchoCanceller3Config::Suppressor::Tuning::operator=(const Tuning& e) = default;
bool EchoCanceller3Config::Validate(EchoCanceller3Config* config) {
RTC_DCHECK(config);
EchoCanceller3Config* c = config;
bool res = true;
if (c->delay.down_sampling_factor != 4 &&
c->delay.down_sampling_factor != 8) {
c->delay.down_sampling_factor = 4;
res = false;
}
res = res & Limit(&c->delay.default_delay, 0, 5000);
res = res & Limit(&c->delay.num_filters, 0, 5000);
res = res & Limit(&c->delay.delay_headroom_samples, 0, 5000);
res = res & Limit(&c->delay.hysteresis_limit_blocks, 0, 5000);
res = res & Limit(&c->delay.fixed_capture_delay_samples, 0, 5000);
res = res & Limit(&c->delay.delay_estimate_smoothing, 0.f, 1.f);
res = res & Limit(&c->delay.delay_candidate_detection_threshold, 0.f, 1.f);
res = res & Limit(&c->delay.delay_selection_thresholds.initial, 1, 250);
res = res & Limit(&c->delay.delay_selection_thresholds.converged, 1, 250);
res = res & FloorLimit(&c->filter.main.length_blocks, 1);
res = res & Limit(&c->filter.main.leakage_converged, 0.f, 1000.f);
res = res & Limit(&c->filter.main.leakage_diverged, 0.f, 1000.f);
res = res & Limit(&c->filter.main.error_floor, 0.f, 1000.f);
res = res & Limit(&c->filter.main.error_ceil, 0.f, 100000000.f);
res = res & Limit(&c->filter.main.noise_gate, 0.f, 100000000.f);
res = res & FloorLimit(&c->filter.main_initial.length_blocks, 1);
res = res & Limit(&c->filter.main_initial.leakage_converged, 0.f, 1000.f);
res = res & Limit(&c->filter.main_initial.leakage_diverged, 0.f, 1000.f);
res = res & Limit(&c->filter.main_initial.error_floor, 0.f, 1000.f);
res = res & Limit(&c->filter.main_initial.error_ceil, 0.f, 100000000.f);
res = res & Limit(&c->filter.main_initial.noise_gate, 0.f, 100000000.f);
if (c->filter.main.length_blocks < c->filter.main_initial.length_blocks) {
c->filter.main_initial.length_blocks = c->filter.main.length_blocks;
res = false;
}
res = res & FloorLimit(&c->filter.shadow.length_blocks, 1);
res = res & Limit(&c->filter.shadow.rate, 0.f, 1.f);
res = res & Limit(&c->filter.shadow.noise_gate, 0.f, 100000000.f);
res = res & FloorLimit(&c->filter.shadow_initial.length_blocks, 1);
res = res & Limit(&c->filter.shadow_initial.rate, 0.f, 1.f);
res = res & Limit(&c->filter.shadow_initial.noise_gate, 0.f, 100000000.f);
if (c->filter.shadow.length_blocks < c->filter.shadow_initial.length_blocks) {
c->filter.shadow_initial.length_blocks = c->filter.shadow.length_blocks;
res = false;
}
res = res & Limit(&c->filter.config_change_duration_blocks, 0, 100000);
res = res & Limit(&c->filter.initial_state_seconds, 0.f, 100.f);
res = res & Limit(&c->erle.min, 1.f, 100000.f);
res = res & Limit(&c->erle.max_l, 1.f, 100000.f);
res = res & Limit(&c->erle.max_h, 1.f, 100000.f);
if (c->erle.min > c->erle.max_l || c->erle.min > c->erle.max_h) {
c->erle.min = std::min(c->erle.max_l, c->erle.max_h);
res = false;
}
res = res & Limit(&c->erle.num_sections, 1, c->filter.main.length_blocks);
res = res & Limit(&c->ep_strength.default_gain, 0.f, 1000000.f);
res = res & Limit(&c->ep_strength.default_len, -1.f, 1.f);
res =
res & Limit(&c->echo_audibility.low_render_limit, 0.f, 32768.f * 32768.f);
res = res &
Limit(&c->echo_audibility.normal_render_limit, 0.f, 32768.f * 32768.f);
res = res & Limit(&c->echo_audibility.floor_power, 0.f, 32768.f * 32768.f);
res = res & Limit(&c->echo_audibility.audibility_threshold_lf, 0.f,
32768.f * 32768.f);
res = res & Limit(&c->echo_audibility.audibility_threshold_mf, 0.f,
32768.f * 32768.f);
res = res & Limit(&c->echo_audibility.audibility_threshold_hf, 0.f,
32768.f * 32768.f);
res = res &
Limit(&c->render_levels.active_render_limit, 0.f, 32768.f * 32768.f);
res = res & Limit(&c->render_levels.poor_excitation_render_limit, 0.f,
32768.f * 32768.f);
res = res & Limit(&c->render_levels.poor_excitation_render_limit_ds8, 0.f,
32768.f * 32768.f);
res = res & Limit(&c->echo_model.noise_floor_hold, 0, 1000);
res = res & Limit(&c->echo_model.min_noise_floor_power, 0, 2000000.f);
res = res & Limit(&c->echo_model.stationary_gate_slope, 0, 1000000.f);
res = res & Limit(&c->echo_model.noise_gate_power, 0, 1000000.f);
res = res & Limit(&c->echo_model.noise_gate_slope, 0, 1000000.f);
res = res & Limit(&c->echo_model.render_pre_window_size, 0, 100);
res = res & Limit(&c->echo_model.render_post_window_size, 0, 100);
res = res & Limit(&c->suppressor.nearend_average_blocks, 1, 5000);
res = res &
Limit(&c->suppressor.normal_tuning.mask_lf.enr_transparent, 0.f, 100.f);
res = res &
Limit(&c->suppressor.normal_tuning.mask_lf.enr_suppress, 0.f, 100.f);
res = res &
Limit(&c->suppressor.normal_tuning.mask_lf.emr_transparent, 0.f, 100.f);
res = res &
Limit(&c->suppressor.normal_tuning.mask_hf.enr_transparent, 0.f, 100.f);
res = res &
Limit(&c->suppressor.normal_tuning.mask_hf.enr_suppress, 0.f, 100.f);
res = res &
Limit(&c->suppressor.normal_tuning.mask_hf.emr_transparent, 0.f, 100.f);
res = res & Limit(&c->suppressor.normal_tuning.max_inc_factor, 0.f, 100.f);
res = res & Limit(&c->suppressor.normal_tuning.max_dec_factor_lf, 0.f, 100.f);
res = res & Limit(&c->suppressor.nearend_tuning.mask_lf.enr_transparent, 0.f,
100.f);
res = res &
Limit(&c->suppressor.nearend_tuning.mask_lf.enr_suppress, 0.f, 100.f);
res = res & Limit(&c->suppressor.nearend_tuning.mask_lf.emr_transparent, 0.f,
100.f);
res = res & Limit(&c->suppressor.nearend_tuning.mask_hf.enr_transparent, 0.f,
100.f);
res = res &
Limit(&c->suppressor.nearend_tuning.mask_hf.enr_suppress, 0.f, 100.f);
res = res & Limit(&c->suppressor.nearend_tuning.mask_hf.emr_transparent, 0.f,
100.f);
res = res & Limit(&c->suppressor.nearend_tuning.max_inc_factor, 0.f, 100.f);
res =
res & Limit(&c->suppressor.nearend_tuning.max_dec_factor_lf, 0.f, 100.f);
res = res & Limit(&c->suppressor.dominant_nearend_detection.enr_threshold,
0.f, 1000000.f);
res = res & Limit(&c->suppressor.dominant_nearend_detection.snr_threshold,
0.f, 1000000.f);
res = res & Limit(&c->suppressor.dominant_nearend_detection.hold_duration, 0,
10000);
res = res & Limit(&c->suppressor.dominant_nearend_detection.trigger_threshold,
0, 10000);
res = res &
Limit(&c->suppressor.subband_nearend_detection.nearend_average_blocks,
1, 1024);
res =
res & Limit(&c->suppressor.subband_nearend_detection.subband1.low, 0, 65);
res = res & Limit(&c->suppressor.subband_nearend_detection.subband1.high,
c->suppressor.subband_nearend_detection.subband1.low, 65);
res =
res & Limit(&c->suppressor.subband_nearend_detection.subband2.low, 0, 65);
res = res & Limit(&c->suppressor.subband_nearend_detection.subband2.high,
c->suppressor.subband_nearend_detection.subband2.low, 65);
res = res & Limit(&c->suppressor.subband_nearend_detection.nearend_threshold,
0.f, 1.e24f);
res = res & Limit(&c->suppressor.subband_nearend_detection.snr_threshold, 0.f,
1.e24f);
res = res & Limit(&c->suppressor.high_bands_suppression.enr_threshold, 0.f,
1000000.f);
res = res & Limit(&c->suppressor.high_bands_suppression.max_gain_during_echo,
0.f, 1.f);
res = res & Limit(&c->suppressor.high_bands_suppression
.anti_howling_activation_threshold,
0.f, 32768.f * 32768.f);
res = res & Limit(&c->suppressor.high_bands_suppression.anti_howling_gain,
0.f, 1.f);
res = res & Limit(&c->suppressor.floor_first_increase, 0.f, 1000000.f);
return res;
}
} // namespace webrtc