Tommi 275e2099ab Remove ReceiveCodec() getters from VideoCodingModule.
The getters are not used and the implementation cannot be guaranteed
to return a correct value except when called synchronously from
the decoding thread while decoding.

The methods as is imply that the implementation needs to offer some
sort of synchronization, and that's not desirable.

BUG=webrtc:7328
R=stefan@webrtc.org

Review-Url: https://codereview.webrtc.org/2741853008 .
Cr-Commit-Position: refs/heads/master@{#17233}
2017-03-14 18:55:19 +00:00

487 lines
16 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/trace_event.h"
#include "webrtc/common_types.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
#include "webrtc/modules/video_coding/encoded_frame.h"
#include "webrtc/modules/video_coding/jitter_buffer.h"
#include "webrtc/modules/video_coding/packet.h"
#include "webrtc/modules/video_coding/video_coding_impl.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace vcm {
VideoReceiver::VideoReceiver(Clock* clock,
EventFactory* event_factory,
EncodedImageCallback* pre_decode_image_callback,
VCMTiming* timing,
NackSender* nack_sender,
KeyFrameRequestSender* keyframe_request_sender)
: clock_(clock),
_timing(timing),
_receiver(_timing,
clock_,
event_factory,
nack_sender,
keyframe_request_sender),
_decodedFrameCallback(_timing, clock_),
_frameTypeCallback(nullptr),
_receiveStatsCallback(nullptr),
_decoderTimingCallback(nullptr),
_packetRequestCallback(nullptr),
_frameFromFile(),
_scheduleKeyRequest(false),
drop_frames_until_keyframe_(false),
max_nack_list_size_(0),
_codecDataBase(nullptr),
pre_decode_image_callback_(pre_decode_image_callback),
_receiveStatsTimer(1000, clock_),
_retransmissionTimer(10, clock_),
_keyRequestTimer(500, clock_) {}
VideoReceiver::~VideoReceiver() {}
void VideoReceiver::Process() {
// Receive-side statistics
// TODO(philipel): Remove this if block when we know what to do with
// ReceiveStatisticsProxy::QualitySample.
if (_receiveStatsTimer.TimeUntilProcess() == 0) {
_receiveStatsTimer.Processed();
rtc::CritScope cs(&process_crit_);
if (_receiveStatsCallback != nullptr) {
_receiveStatsCallback->OnReceiveRatesUpdated(0, 0);
}
}
// Key frame requests
if (_keyRequestTimer.TimeUntilProcess() == 0) {
_keyRequestTimer.Processed();
bool request_key_frame = false;
{
rtc::CritScope cs(&process_crit_);
request_key_frame = _scheduleKeyRequest && _frameTypeCallback != nullptr;
}
if (request_key_frame)
RequestKeyFrame();
}
// Packet retransmission requests
// TODO(holmer): Add API for changing Process interval and make sure it's
// disabled when NACK is off.
if (_retransmissionTimer.TimeUntilProcess() == 0) {
_retransmissionTimer.Processed();
bool callback_registered = false;
uint16_t length;
{
rtc::CritScope cs(&process_crit_);
length = max_nack_list_size_;
callback_registered = _packetRequestCallback != nullptr;
}
if (callback_registered && length > 0) {
// Collect sequence numbers from the default receiver.
bool request_key_frame = false;
std::vector<uint16_t> nackList = _receiver.NackList(&request_key_frame);
int32_t ret = VCM_OK;
if (request_key_frame) {
ret = RequestKeyFrame();
}
if (ret == VCM_OK && !nackList.empty()) {
rtc::CritScope cs(&process_crit_);
if (_packetRequestCallback != nullptr) {
_packetRequestCallback->ResendPackets(&nackList[0], nackList.size());
}
}
}
}
}
int64_t VideoReceiver::TimeUntilNextProcess() {
int64_t timeUntilNextProcess = _receiveStatsTimer.TimeUntilProcess();
if (_receiver.NackMode() != kNoNack) {
// We need a Process call more often if we are relying on
// retransmissions
timeUntilNextProcess =
VCM_MIN(timeUntilNextProcess, _retransmissionTimer.TimeUntilProcess());
}
timeUntilNextProcess =
VCM_MIN(timeUntilNextProcess, _keyRequestTimer.TimeUntilProcess());
return timeUntilNextProcess;
}
int32_t VideoReceiver::SetReceiveChannelParameters(int64_t rtt) {
rtc::CritScope cs(&receive_crit_);
_receiver.UpdateRtt(rtt);
return 0;
}
// Enable or disable a video protection method.
// Note: This API should be deprecated, as it does not offer a distinction
// between the protection method and decoding with or without errors. If such a
// behavior is desired, use the following API: SetReceiverRobustnessMode.
int32_t VideoReceiver::SetVideoProtection(VCMVideoProtection videoProtection,
bool enable) {
// By default, do not decode with errors.
_receiver.SetDecodeErrorMode(kNoErrors);
switch (videoProtection) {
case kProtectionNack: {
RTC_DCHECK(enable);
_receiver.SetNackMode(kNack, -1, -1);
break;
}
case kProtectionNackFEC: {
rtc::CritScope cs(&receive_crit_);
RTC_DCHECK(enable);
_receiver.SetNackMode(kNack,
media_optimization::kLowRttNackMs,
media_optimization::kMaxRttDelayThreshold);
_receiver.SetDecodeErrorMode(kNoErrors);
break;
}
case kProtectionFEC:
case kProtectionNone:
// No receiver-side protection.
RTC_DCHECK(enable);
_receiver.SetNackMode(kNoNack, -1, -1);
_receiver.SetDecodeErrorMode(kWithErrors);
break;
}
return VCM_OK;
}
// Register a receive callback. Will be called whenever there is a new frame
// ready for rendering.
int32_t VideoReceiver::RegisterReceiveCallback(
VCMReceiveCallback* receiveCallback) {
RTC_DCHECK(construction_thread_.CalledOnValidThread());
// TODO(tommi): Callback may be null, but only after the decoder thread has
// been stopped. Use the signal we now get that tells us when the decoder
// thread isn't running, to DCHECK that the method is never called while it
// is. Once we're confident, we can remove the lock.
rtc::CritScope cs(&receive_crit_);
_decodedFrameCallback.SetUserReceiveCallback(receiveCallback);
return VCM_OK;
}
int32_t VideoReceiver::RegisterReceiveStatisticsCallback(
VCMReceiveStatisticsCallback* receiveStats) {
RTC_DCHECK(construction_thread_.CalledOnValidThread());
rtc::CritScope cs(&process_crit_);
_receiver.RegisterStatsCallback(receiveStats);
_receiveStatsCallback = receiveStats;
return VCM_OK;
}
int32_t VideoReceiver::RegisterDecoderTimingCallback(
VCMDecoderTimingCallback* decoderTiming) {
RTC_DCHECK(construction_thread_.CalledOnValidThread());
rtc::CritScope cs(&process_crit_);
_decoderTimingCallback = decoderTiming;
return VCM_OK;
}
// Register an externally defined decoder object.
void VideoReceiver::RegisterExternalDecoder(VideoDecoder* externalDecoder,
uint8_t payloadType) {
RTC_DCHECK(construction_thread_.CalledOnValidThread());
// TODO(tommi): This method must be called when the decoder thread is not
// running. Do we need a lock in that case?
rtc::CritScope cs(&receive_crit_);
if (externalDecoder == nullptr) {
RTC_CHECK(_codecDataBase.DeregisterExternalDecoder(payloadType));
return;
}
_codecDataBase.RegisterExternalDecoder(externalDecoder, payloadType);
}
// Register a frame type request callback.
int32_t VideoReceiver::RegisterFrameTypeCallback(
VCMFrameTypeCallback* frameTypeCallback) {
rtc::CritScope cs(&process_crit_);
_frameTypeCallback = frameTypeCallback;
return VCM_OK;
}
int32_t VideoReceiver::RegisterPacketRequestCallback(
VCMPacketRequestCallback* callback) {
rtc::CritScope cs(&process_crit_);
_packetRequestCallback = callback;
return VCM_OK;
}
void VideoReceiver::TriggerDecoderShutdown() {
RTC_DCHECK(construction_thread_.CalledOnValidThread());
_receiver.TriggerDecoderShutdown();
}
// Decode next frame, blocking.
// Should be called as often as possible to get the most out of the decoder.
int32_t VideoReceiver::Decode(uint16_t maxWaitTimeMs) {
bool prefer_late_decoding = false;
{
// TODO(tommi): Chances are that this lock isn't required.
rtc::CritScope cs(&receive_crit_);
prefer_late_decoding = _codecDataBase.PrefersLateDecoding();
}
VCMEncodedFrame* frame =
_receiver.FrameForDecoding(maxWaitTimeMs, prefer_late_decoding);
if (!frame)
return VCM_FRAME_NOT_READY;
{
rtc::CritScope cs(&process_crit_);
if (drop_frames_until_keyframe_) {
// Still getting delta frames, schedule another keyframe request as if
// decode failed.
if (frame->FrameType() != kVideoFrameKey) {
_scheduleKeyRequest = true;
_receiver.ReleaseFrame(frame);
return VCM_FRAME_NOT_READY;
}
drop_frames_until_keyframe_ = false;
}
}
if (pre_decode_image_callback_) {
EncodedImage encoded_image(frame->EncodedImage());
int qp = -1;
if (qp_parser_.GetQp(*frame, &qp)) {
encoded_image.qp_ = qp;
}
pre_decode_image_callback_->OnEncodedImage(encoded_image,
frame->CodecSpecific(), nullptr);
}
rtc::CritScope cs(&receive_crit_);
// If this frame was too late, we should adjust the delay accordingly
_timing->UpdateCurrentDelay(frame->RenderTimeMs(),
clock_->TimeInMilliseconds());
if (first_frame_received_()) {
LOG(LS_INFO) << "Received first "
<< (frame->Complete() ? "complete" : "incomplete")
<< " decodable video frame";
}
const int32_t ret = Decode(*frame);
_receiver.ReleaseFrame(frame);
return ret;
}
// Used for the new jitter buffer.
// TODO(philipel): Clean up among the Decode functions as we replace
// VCMEncodedFrame with FrameObject.
int32_t VideoReceiver::Decode(const webrtc::VCMEncodedFrame* frame) {
rtc::CritScope lock(&receive_crit_);
if (pre_decode_image_callback_) {
EncodedImage encoded_image(frame->EncodedImage());
int qp = -1;
if (qp_parser_.GetQp(*frame, &qp)) {
encoded_image.qp_ = qp;
}
pre_decode_image_callback_->OnEncodedImage(encoded_image,
frame->CodecSpecific(), nullptr);
}
return Decode(*frame);
}
void VideoReceiver::DecodingStopped() {
// No further calls to Decode() will be made after this point.
// TODO(tommi): Make use of this to clarify and check threading model.
}
int32_t VideoReceiver::RequestKeyFrame() {
TRACE_EVENT0("webrtc", "RequestKeyFrame");
rtc::CritScope cs(&process_crit_);
if (_frameTypeCallback != nullptr) {
const int32_t ret = _frameTypeCallback->RequestKeyFrame();
if (ret < 0) {
return ret;
}
_scheduleKeyRequest = false;
} else {
return VCM_MISSING_CALLBACK;
}
return VCM_OK;
}
// Must be called from inside the receive side critical section.
int32_t VideoReceiver::Decode(const VCMEncodedFrame& frame) {
TRACE_EVENT0("webrtc", "VideoReceiver::Decode");
// Change decoder if payload type has changed
VCMGenericDecoder* decoder =
_codecDataBase.GetDecoder(frame, &_decodedFrameCallback);
if (decoder == nullptr) {
return VCM_NO_CODEC_REGISTERED;
}
// Decode a frame
int32_t ret = decoder->Decode(frame, clock_->TimeInMilliseconds());
// Check for failed decoding, run frame type request callback if needed.
bool request_key_frame = false;
if (ret < 0) {
request_key_frame = true;
}
if (!frame.Complete() || frame.MissingFrame()) {
request_key_frame = true;
ret = VCM_OK;
}
if (request_key_frame) {
rtc::CritScope cs(&process_crit_);
_scheduleKeyRequest = true;
}
return ret;
}
// Register possible receive codecs, can be called multiple times
int32_t VideoReceiver::RegisterReceiveCodec(const VideoCodec* receiveCodec,
int32_t numberOfCores,
bool requireKeyFrame) {
RTC_DCHECK(construction_thread_.CalledOnValidThread());
// TODO(tommi): This method must only be called when the decoder thread
// is not running. Do we need a lock? If not, it looks like we might not need
// a lock at all for |_codecDataBase|.
rtc::CritScope cs(&receive_crit_);
if (receiveCodec == nullptr) {
return VCM_PARAMETER_ERROR;
}
if (!_codecDataBase.RegisterReceiveCodec(receiveCodec, numberOfCores,
requireKeyFrame)) {
return -1;
}
return 0;
}
// Incoming packet from network parsed and ready for decode, non blocking.
int32_t VideoReceiver::IncomingPacket(const uint8_t* incomingPayload,
size_t payloadLength,
const WebRtcRTPHeader& rtpInfo) {
if (rtpInfo.frameType == kVideoFrameKey) {
TRACE_EVENT1("webrtc", "VCM::PacketKeyFrame", "seqnum",
rtpInfo.header.sequenceNumber);
}
if (incomingPayload == nullptr) {
// The jitter buffer doesn't handle non-zero payload lengths for packets
// without payload.
// TODO(holmer): We should fix this in the jitter buffer.
payloadLength = 0;
}
const VCMPacket packet(incomingPayload, payloadLength, rtpInfo);
int32_t ret = _receiver.InsertPacket(packet);
// TODO(holmer): Investigate if this somehow should use the key frame
// request scheduling to throttle the requests.
if (ret == VCM_FLUSH_INDICATOR) {
{
rtc::CritScope cs(&process_crit_);
drop_frames_until_keyframe_ = true;
}
RequestKeyFrame();
} else if (ret < 0) {
return ret;
}
return VCM_OK;
}
// Minimum playout delay (used for lip-sync). This is the minimum delay required
// to sync with audio. Not included in VideoCodingModule::Delay()
// Defaults to 0 ms.
int32_t VideoReceiver::SetMinimumPlayoutDelay(uint32_t minPlayoutDelayMs) {
_timing->set_min_playout_delay(minPlayoutDelayMs);
return VCM_OK;
}
// The estimated delay caused by rendering, defaults to
// kDefaultRenderDelayMs = 10 ms
int32_t VideoReceiver::SetRenderDelay(uint32_t timeMS) {
_timing->set_render_delay(timeMS);
return VCM_OK;
}
// Current video delay
int32_t VideoReceiver::Delay() const {
return _timing->TargetVideoDelay();
}
uint32_t VideoReceiver::DiscardedPackets() const {
return _receiver.DiscardedPackets();
}
int VideoReceiver::SetReceiverRobustnessMode(
ReceiverRobustness robustnessMode,
VCMDecodeErrorMode decode_error_mode) {
rtc::CritScope cs(&receive_crit_);
switch (robustnessMode) {
case VideoCodingModule::kNone:
_receiver.SetNackMode(kNoNack, -1, -1);
break;
case VideoCodingModule::kHardNack:
// Always wait for retransmissions (except when decoding with errors).
_receiver.SetNackMode(kNack, -1, -1);
break;
case VideoCodingModule::kSoftNack:
#if 1
assert(false); // TODO(hlundin): Not completed.
return VCM_NOT_IMPLEMENTED;
#else
// Enable hybrid NACK/FEC. Always wait for retransmissions and don't add
// extra delay when RTT is above kLowRttNackMs.
_receiver.SetNackMode(kNack, media_optimization::kLowRttNackMs, -1);
break;
#endif
case VideoCodingModule::kReferenceSelection:
#if 1
assert(false); // TODO(hlundin): Not completed.
return VCM_NOT_IMPLEMENTED;
#else
if (decode_error_mode == kNoErrors) {
return VCM_PARAMETER_ERROR;
}
_receiver.SetNackMode(kNoNack, -1, -1);
break;
#endif
}
_receiver.SetDecodeErrorMode(decode_error_mode);
return VCM_OK;
}
void VideoReceiver::SetDecodeErrorMode(VCMDecodeErrorMode decode_error_mode) {
rtc::CritScope cs(&receive_crit_);
_receiver.SetDecodeErrorMode(decode_error_mode);
}
void VideoReceiver::SetNackSettings(size_t max_nack_list_size,
int max_packet_age_to_nack,
int max_incomplete_time_ms) {
if (max_nack_list_size != 0) {
rtc::CritScope cs(&process_crit_);
max_nack_list_size_ = max_nack_list_size;
}
_receiver.SetNackSettings(max_nack_list_size, max_packet_age_to_nack,
max_incomplete_time_ms);
}
int VideoReceiver::SetMinReceiverDelay(int desired_delay_ms) {
return _receiver.SetMinReceiverDelay(desired_delay_ms);
}
} // namespace vcm
} // namespace webrtc