webrtc_m130/modules/video_coding/timing/timing_unittest.cc
Shunbo Li b7f5e7fb29 Fix video renderer slowdown by wrong RenderTime
This commit fixes the issue of video playback in slow motion caused by VCMTiming being unable to provide the correct rendering time in
 scenarios of continuous network packet loss

WANT_LGTM=mbonadei

Bug: webrtc:376183208
Change-Id: I63617068506e536c4b812215ea084eec18e8ee06
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/367000
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Commit-Queue: Ilya Nikolaevskiy <ilnik@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#43392}
2024-11-13 14:45:29 +00:00

495 lines
20 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing/timing.h"
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
namespace webrtc {
namespace {
constexpr Frequency k25Fps = Frequency::Hertz(25);
constexpr Frequency k90kHz = Frequency::KiloHertz(90);
MATCHER(HasConsistentVideoDelayTimings, "") {
// Delays should be non-negative.
bool p1 = arg.minimum_delay >= TimeDelta::Zero();
bool p2 = arg.estimated_max_decode_time >= TimeDelta::Zero();
bool p3 = arg.render_delay >= TimeDelta::Zero();
bool p4 = arg.min_playout_delay >= TimeDelta::Zero();
bool p5 = arg.max_playout_delay >= TimeDelta::Zero();
bool p6 = arg.target_delay >= TimeDelta::Zero();
bool p7 = arg.current_delay >= TimeDelta::Zero();
*result_listener << "\np: " << p1 << p2 << p3 << p4 << p5 << p6 << p7;
bool p = p1 && p2 && p3 && p4 && p5 && p6 && p7;
// Delays should be internally consistent.
bool m1 = arg.minimum_delay <= arg.target_delay;
if (!m1) {
*result_listener << "\nminimum_delay: " << ToString(arg.minimum_delay)
<< ", " << "target_delay: " << ToString(arg.target_delay)
<< "\n";
}
bool m2 = arg.minimum_delay <= arg.current_delay;
if (!m2) {
*result_listener << "\nminimum_delay: " << ToString(arg.minimum_delay)
<< ", "
<< "current_delay: " << ToString(arg.current_delay);
}
bool m3 = arg.target_delay >= arg.min_playout_delay;
if (!m3) {
*result_listener << "\ntarget_delay: " << ToString(arg.target_delay) << ", "
<< "min_playout_delay: " << ToString(arg.min_playout_delay)
<< "\n";
}
// TODO(crbug.com/webrtc/15197): Uncomment when this is guaranteed.
// bool m4 = arg.target_delay <= arg.max_playout_delay;
bool m5 = arg.current_delay >= arg.min_playout_delay;
if (!m5) {
*result_listener << "\ncurrent_delay: " << ToString(arg.current_delay)
<< ", "
<< "min_playout_delay: " << ToString(arg.min_playout_delay)
<< "\n";
}
bool m6 = arg.current_delay <= arg.max_playout_delay;
if (!m6) {
*result_listener << "\ncurrent_delay: " << ToString(arg.current_delay)
<< ", "
<< "max_playout_delay: " << ToString(arg.max_playout_delay)
<< "\n";
}
bool m = m1 && m2 && m3 && m5 && m6;
return p && m;
}
} // namespace
TEST(VCMTimingTest, JitterDelay) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(0);
VCMTiming timing(&clock, field_trials);
timing.Reset();
uint32_t timestamp = 0;
timing.UpdateCurrentDelay(timestamp);
timing.Reset();
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
TimeDelta jitter_delay = TimeDelta::Millis(20);
timing.SetJitterDelay(jitter_delay);
timing.UpdateCurrentDelay(timestamp);
timing.set_render_delay(TimeDelta::Zero());
auto wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
// First update initializes the render time. Since we have no decode delay
// we get wait_time = renderTime - now - renderDelay = jitter.
EXPECT_EQ(jitter_delay, wait_time);
jitter_delay += TimeDelta::Millis(VCMTiming::kDelayMaxChangeMsPerS + 10);
timestamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.SetJitterDelay(jitter_delay);
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
// Since we gradually increase the delay we only get 100 ms every second.
EXPECT_EQ(jitter_delay - TimeDelta::Millis(10), wait_time);
timestamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
EXPECT_EQ(jitter_delay, wait_time);
// Insert frames without jitter, verify that this gives the exact wait time.
const int kNumFrames = 300;
for (int i = 0; i < kNumFrames; i++) {
clock.AdvanceTime(1 / k25Fps);
timestamp += k90kHz / k25Fps;
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
}
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
EXPECT_EQ(jitter_delay, wait_time);
// Add decode time estimates for 1 second.
const TimeDelta kDecodeTime = TimeDelta::Millis(10);
for (int i = 0; i < k25Fps.hertz(); i++) {
clock.AdvanceTime(kDecodeTime);
timing.StopDecodeTimer(kDecodeTime, clock.CurrentTime());
timestamp += k90kHz / k25Fps;
clock.AdvanceTime(1 / k25Fps - kDecodeTime);
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
}
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
EXPECT_EQ(jitter_delay, wait_time);
const TimeDelta kMinTotalDelay = TimeDelta::Millis(200);
timing.set_min_playout_delay(kMinTotalDelay);
clock.AdvanceTimeMilliseconds(5000);
timestamp += 5 * 90000;
timing.UpdateCurrentDelay(timestamp);
const TimeDelta kRenderDelay = TimeDelta::Millis(10);
timing.set_render_delay(kRenderDelay);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
// We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
// (10) to wait.
EXPECT_EQ(kMinTotalDelay - kDecodeTime - kRenderDelay, wait_time);
// The total video delay should be equal to the min total delay.
EXPECT_EQ(kMinTotalDelay, timing.TargetVideoDelay());
// Reset playout delay.
timing.set_min_playout_delay(TimeDelta::Zero());
clock.AdvanceTimeMilliseconds(5000);
timestamp += 5 * 90000;
timing.UpdateCurrentDelay(timestamp);
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, TimestampWrapAround) {
constexpr auto kStartTime = Timestamp::Millis(1337);
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(kStartTime);
VCMTiming timing(&clock, field_trials);
// Provoke a wrap-around. The fifth frame will have wrapped at 25 fps.
constexpr uint32_t kRtpTicksPerFrame = k90kHz / k25Fps;
uint32_t timestamp = 0xFFFFFFFFu - 3 * kRtpTicksPerFrame;
for (int i = 0; i < 5; ++i) {
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
clock.AdvanceTime(1 / k25Fps);
timestamp += kRtpTicksPerFrame;
EXPECT_EQ(kStartTime + 3 / k25Fps,
timing.RenderTime(0xFFFFFFFFu, clock.CurrentTime()));
// One ms later in 90 kHz.
EXPECT_EQ(kStartTime + 3 / k25Fps + TimeDelta::Millis(1),
timing.RenderTime(89u, clock.CurrentTime()));
}
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, UseLowLatencyRenderer) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(0);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// Default is false.
EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
// False if min playout delay > 0.
timing.set_min_playout_delay(TimeDelta::Millis(10));
timing.set_max_playout_delay(TimeDelta::Millis(20));
EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
// True if min==0, max > 0.
timing.set_min_playout_delay(TimeDelta::Zero());
EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
// True if min==max==0.
timing.set_max_playout_delay(TimeDelta::Zero());
EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
// True also for max playout delay==500 ms.
timing.set_max_playout_delay(TimeDelta::Millis(500));
EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
// False if max playout delay > 500 ms.
timing.set_max_playout_delay(TimeDelta::Millis(501));
EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) {
// This is the default path when the RTP playout delay header extension is set
// to min==0 and max==0.
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
constexpr Timestamp kZeroRenderTime = Timestamp::Zero();
SimulatedClock clock(kStartTimeUs);
test::ScopedKeyValueConfig field_trials;
VCMTiming timing(&clock, field_trials);
timing.Reset();
timing.set_max_playout_delay(TimeDelta::Zero());
for (int i = 0; i < 10; ++i) {
clock.AdvanceTime(kTimeDelta);
Timestamp now = clock.CurrentTime();
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
}
// Another frame submitted at the same time also returns a negative max
// waiting time.
Timestamp now = clock.CurrentTime();
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
// MaxWaitingTime should be less than zero even if there's a burst of frames.
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
// The minimum pacing is enabled by a field trial and active if the RTP
// playout delay header extension is set to min==0.
constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
test::ScopedKeyValueConfig field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
constexpr auto kZeroRenderTime = Timestamp::Zero();
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// MaxWaitingTime() returns zero for evenly spaced video frames.
for (int i = 0; i < 10; ++i) {
clock.AdvanceTime(kTimeDelta);
Timestamp now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
timing.SetLastDecodeScheduledTimestamp(now);
}
// Another frame submitted at the same time is paced according to the field
// trial setting.
auto now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
// If there's a burst of frames, the wait time is calculated based on next
// decode time.
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
// Allow a few ms to pass, this should be subtracted from the MaxWaitingTime.
constexpr TimeDelta kTwoMs = TimeDelta::Millis(2);
clock.AdvanceTime(kTwoMs);
now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing - kTwoMs);
// A frame is decoded at the current time, the wait time should be restored to
// pacing delay.
timing.SetLastDecodeScheduledTimestamp(now);
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
// The minimum pacing is enabled by a field trial but should not have any
// effect if render_time_ms is greater than 0;
test::ScopedKeyValueConfig field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock, field_trials);
timing.Reset();
clock.AdvanceTime(kTimeDelta);
auto now = clock.CurrentTime();
Timestamp render_time = now + TimeDelta::Millis(30);
// Estimate the internal processing delay from the first frame.
TimeDelta estimated_processing_delay =
(render_time - now) -
timing.MaxWaitingTime(render_time, now,
/*too_many_frames_queued=*/false);
EXPECT_GT(estimated_processing_delay, TimeDelta::Zero());
// Any other frame submitted at the same time should be scheduled according to
// its render time.
for (int i = 0; i < 5; ++i) {
render_time += kTimeDelta;
EXPECT_EQ(timing.MaxWaitingTime(render_time, now,
/*too_many_frames_queued=*/false),
render_time - now - estimated_processing_delay);
}
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) {
// The minimum pacing is enabled by a field trial and active if the RTP
// playout delay header extension is set to min==0.
constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
test::ScopedKeyValueConfig field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
constexpr auto kZeroRenderTime = Timestamp::Zero();
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// MaxWaitingTime() returns zero for evenly spaced video frames.
for (int i = 0; i < 10; ++i) {
clock.AdvanceTime(kTimeDelta);
auto now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
timing.SetLastDecodeScheduledTimestamp(now);
}
// Another frame submitted at the same time is paced according to the field
// trial setting.
auto now_ms = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
/*too_many_frames_queued=*/false),
kMinPacing);
// MaxWaitingTime returns 0 even if there's a burst of frames if
// too_many_frames_queued is set to true.
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
/*too_many_frames_queued=*/true),
TimeDelta::Zero());
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
/*too_many_frames_queued=*/true),
TimeDelta::Zero());
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, UpdateCurrentDelayCapsWhenOffByMicroseconds) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(0);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// Set larger initial current delay.
timing.set_min_playout_delay(TimeDelta::Millis(200));
timing.UpdateCurrentDelay(Timestamp::Millis(900), Timestamp::Millis(1000));
// Add a few microseconds to ensure that the delta of decode time is 0 after
// rounding, and should reset to the target delay.
timing.set_min_playout_delay(TimeDelta::Millis(50));
Timestamp decode_time = Timestamp::Millis(1337);
Timestamp render_time =
decode_time + TimeDelta::Millis(10) + TimeDelta::Micros(37);
timing.UpdateCurrentDelay(render_time, decode_time);
EXPECT_EQ(timing.GetTimings().current_delay, timing.TargetVideoDelay());
// TODO(crbug.com/webrtc/15197): Fix this.
// EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, GetTimings) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(33);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// Setup.
TimeDelta render_delay = TimeDelta::Millis(11);
timing.set_render_delay(render_delay);
TimeDelta min_playout_delay = TimeDelta::Millis(50);
timing.set_min_playout_delay(min_playout_delay);
TimeDelta max_playout_delay = TimeDelta::Millis(500);
timing.set_max_playout_delay(max_playout_delay);
// On complete.
timing.IncomingTimestamp(3000, clock.CurrentTime());
clock.AdvanceTimeMilliseconds(1);
// On decodable.
Timestamp render_time =
timing.RenderTime(/*next_temporal_unit_rtp=*/3000, clock.CurrentTime());
TimeDelta minimum_delay = TimeDelta::Millis(123);
timing.SetJitterDelay(minimum_delay);
timing.UpdateCurrentDelay(render_time, clock.CurrentTime());
clock.AdvanceTimeMilliseconds(100);
// On decoded.
TimeDelta decode_time = TimeDelta::Millis(4);
timing.StopDecodeTimer(decode_time, clock.CurrentTime());
VCMTiming::VideoDelayTimings timings = timing.GetTimings();
EXPECT_EQ(timings.num_decoded_frames, 1u);
EXPECT_EQ(timings.minimum_delay, minimum_delay);
// A single decoded frame is not enough to calculate p95.
EXPECT_EQ(timings.estimated_max_decode_time, TimeDelta::Zero());
EXPECT_EQ(timings.render_delay, render_delay);
EXPECT_EQ(timings.min_playout_delay, min_playout_delay);
EXPECT_EQ(timings.max_playout_delay, max_playout_delay);
EXPECT_EQ(timings.target_delay, minimum_delay);
EXPECT_EQ(timings.current_delay, minimum_delay);
EXPECT_THAT(timings, HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, GetTimingsBeforeAndAfterValidRtpTimestamp) {
SimulatedClock clock(33);
test::ScopedKeyValueConfig field_trials;
VCMTiming timing(&clock, field_trials);
// Setup.
TimeDelta min_playout_delay = TimeDelta::Millis(50);
timing.set_min_playout_delay(min_playout_delay);
timing.set_max_playout_delay(TimeDelta::Millis(500));
// On decodable frames before valid rtp timestamp.
constexpr int decodeable_frame_cnt = 10;
constexpr uint32_t any_time_elapsed = 17;
constexpr uint32_t rtp_ts_base = 3000;
constexpr uint32_t rtp_ts_delta_10fps = 9000;
constexpr uint32_t frame_ts_delta_10fps = 100;
uint32_t rtp_ts = rtp_ts_base;
for (int i = 0; i < decodeable_frame_cnt; i++) {
clock.AdvanceTimeMilliseconds(any_time_elapsed);
rtp_ts += rtp_ts_delta_10fps;
Timestamp render_time = timing.RenderTime(rtp_ts, clock.CurrentTime());
// Render time should be CurrentTime, because timing.IncomingTimestamp has
// not been called yet.
EXPECT_EQ(render_time, clock.CurrentTime());
}
// On frame complete, which one not 'metadata.delayed_by_retransmission'
Timestamp valid_frame_ts = clock.CurrentTime();
timing.IncomingTimestamp(rtp_ts, valid_frame_ts);
clock.AdvanceTimeMilliseconds(any_time_elapsed);
rtp_ts += rtp_ts_delta_10fps;
Timestamp render_time = timing.RenderTime(rtp_ts, clock.CurrentTime());
// Render time should be relative to the latest valid frame timestamp.
EXPECT_EQ(render_time, valid_frame_ts +
TimeDelta::Millis(frame_ts_delta_10fps) +
min_playout_delay);
}
} // namespace webrtc