peah debaa442ed Corrected the behavior in AEC3 during buffer overruns and underruns
This CL corrects the behavior in AEC3 during buffer overruns
and underruns in three ways.
1) When there is no render signal available (due to a buffering
 issues, a zero block is inserted instead of the previous render
 block. This avoids the same block being repeatedly inserted when
 there are many back-to-back calls.
2) The internal counters in the main adaptive filter gain are also
 reset when the filter is reset.
3) The internal counters in the shadow adaptive filter gain are
 reset when the filter is reset.

BUG=chromium:717920,webrtc:7559

Review-Url: https://codereview.webrtc.org/2862533002
Cr-Commit-Position: refs/heads/master@{#17991}
2017-05-03 12:39:09 +00:00

218 lines
6.9 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/render_delay_buffer.h"
#include <string.h>
#include <algorithm>
#include "webrtc/base/checks.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/logging.h"
#include "webrtc/modules/audio_processing/aec3/aec3_common.h"
#include "webrtc/modules/audio_processing/aec3/block_processor.h"
#include "webrtc/modules/audio_processing/aec3/decimator_by_4.h"
#include "webrtc/modules/audio_processing/aec3/fft_data.h"
namespace webrtc {
namespace {
class ApiCallJitterBuffer {
public:
explicit ApiCallJitterBuffer(size_t num_bands) {
buffer_.fill(std::vector<std::vector<float>>(
num_bands, std::vector<float>(kBlockSize, 0.f)));
}
~ApiCallJitterBuffer() = default;
void Reset() {
size_ = 0;
last_insert_index_ = 0;
}
void Insert(const std::vector<std::vector<float>>& block) {
RTC_DCHECK_LT(size_, buffer_.size());
last_insert_index_ = (last_insert_index_ + 1) % buffer_.size();
RTC_DCHECK_EQ(buffer_[last_insert_index_].size(), block.size());
RTC_DCHECK_EQ(buffer_[last_insert_index_][0].size(), block[0].size());
for (size_t k = 0; k < block.size(); ++k) {
std::copy(block[k].begin(), block[k].end(),
buffer_[last_insert_index_][k].begin());
}
++size_;
}
void Remove(std::vector<std::vector<float>>* block) {
RTC_DCHECK_LT(0, size_);
--size_;
const size_t extract_index =
(last_insert_index_ - size_ + buffer_.size()) % buffer_.size();
for (size_t k = 0; k < block->size(); ++k) {
std::copy(buffer_[extract_index][k].begin(),
buffer_[extract_index][k].end(), (*block)[k].begin());
}
}
size_t Size() const { return size_; }
bool Full() const { return size_ >= (buffer_.size()); }
bool Empty() const { return size_ == 0; }
private:
std::array<std::vector<std::vector<float>>, kMaxApiCallsJitterBlocks> buffer_;
size_t size_ = 0;
int last_insert_index_ = 0;
};
class RenderDelayBufferImpl final : public RenderDelayBuffer {
public:
explicit RenderDelayBufferImpl(size_t num_bands);
~RenderDelayBufferImpl() override;
void Reset() override;
bool Insert(const std::vector<std::vector<float>>& block) override;
bool UpdateBuffers() override;
void SetDelay(size_t delay) override;
size_t Delay() const override { return delay_; }
const RenderBuffer& GetRenderBuffer() const override { return fft_buffer_; }
const DownsampledRenderBuffer& GetDownsampledRenderBuffer() const override {
return downsampled_render_buffer_;
}
private:
const Aec3Optimization optimization_;
std::array<std::vector<std::vector<float>>, kRenderDelayBufferSize> buffer_;
size_t delay_ = 0;
size_t last_insert_index_ = 0;
RenderBuffer fft_buffer_;
DownsampledRenderBuffer downsampled_render_buffer_;
DecimatorBy4 render_decimator_;
ApiCallJitterBuffer api_call_jitter_buffer_;
const std::vector<std::vector<float>> zero_block_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(RenderDelayBufferImpl);
};
RenderDelayBufferImpl::RenderDelayBufferImpl(size_t num_bands)
: optimization_(DetectOptimization()),
fft_buffer_(
optimization_,
num_bands,
std::max(kResidualEchoPowerRenderWindowSize, kAdaptiveFilterLength),
std::vector<size_t>(1, kAdaptiveFilterLength)),
api_call_jitter_buffer_(num_bands),
zero_block_(num_bands, std::vector<float>(kBlockSize, 0.f)) {
buffer_.fill(std::vector<std::vector<float>>(
num_bands, std::vector<float>(kBlockSize, 0.f)));
RTC_DCHECK_LT(buffer_.size(), downsampled_render_buffer_.buffer.size());
}
RenderDelayBufferImpl::~RenderDelayBufferImpl() = default;
void RenderDelayBufferImpl::Reset() {
// Empty all data in the buffers.
delay_ = 0;
last_insert_index_ = 0;
downsampled_render_buffer_.position = 0;
downsampled_render_buffer_.buffer.fill(0.f);
fft_buffer_.Clear();
api_call_jitter_buffer_.Reset();
for (auto& c : buffer_) {
for (auto& b : c) {
std::fill(b.begin(), b.end(), 0.f);
}
}
}
bool RenderDelayBufferImpl::Insert(
const std::vector<std::vector<float>>& block) {
RTC_DCHECK_EQ(block.size(), buffer_[0].size());
RTC_DCHECK_EQ(block[0].size(), buffer_[0][0].size());
if (api_call_jitter_buffer_.Full()) {
// Report buffer overrun and let the caller handle the overrun.
return false;
}
api_call_jitter_buffer_.Insert(block);
return true;
}
bool RenderDelayBufferImpl::UpdateBuffers() {
bool underrun = true;
// Update the buffers with a new block if such is available, otherwise insert
// a block of silence.
if (api_call_jitter_buffer_.Size() > 0) {
last_insert_index_ = (last_insert_index_ + 1) % buffer_.size();
api_call_jitter_buffer_.Remove(&buffer_[last_insert_index_]);
underrun = false;
}
downsampled_render_buffer_.position =
(downsampled_render_buffer_.position - kSubBlockSize +
downsampled_render_buffer_.buffer.size()) %
downsampled_render_buffer_.buffer.size();
std::array<float, kSubBlockSize> render_downsampled;
if (underrun) {
render_decimator_.Decimate(zero_block_[0], render_downsampled);
} else {
render_decimator_.Decimate(buffer_[last_insert_index_][0],
render_downsampled);
}
std::copy(render_downsampled.rbegin(), render_downsampled.rend(),
downsampled_render_buffer_.buffer.begin() +
downsampled_render_buffer_.position);
if (underrun) {
fft_buffer_.Insert(zero_block_);
} else {
fft_buffer_.Insert(buffer_[(last_insert_index_ - delay_ + buffer_.size()) %
buffer_.size()]);
}
return !underrun;
}
void RenderDelayBufferImpl::SetDelay(size_t delay) {
if (delay_ == delay) {
return;
}
// If there is a new delay set, clear the fft buffer.
fft_buffer_.Clear();
if ((buffer_.size() - 1) < delay) {
// If the desired delay is larger than the delay buffer, shorten the delay
// buffer size to achieve the desired alignment with the available buffer
// size.
downsampled_render_buffer_.position =
(downsampled_render_buffer_.position +
kSubBlockSize * (delay - (buffer_.size() - 1))) %
downsampled_render_buffer_.buffer.size();
last_insert_index_ =
(last_insert_index_ - (delay - (buffer_.size() - 1)) + buffer_.size()) %
buffer_.size();
delay_ = buffer_.size() - 1;
} else {
delay_ = delay;
}
}
} // namespace
RenderDelayBuffer* RenderDelayBuffer::Create(size_t num_bands) {
return new RenderDelayBufferImpl(num_bands);
}
} // namespace webrtc