This CL increases the transparency of the AEC3 via tuning. The major changes are 1) Limiting the suppression gain to the 16 bit sample floor. 2) Controlling the rate of the suppression gain increase according to the signal characteristics. Apart from these tunings, the code for the suppression gain was refactored to increase/maintain the code quality after the above changes. BUG=webrtc:7519,webrtc:7528, chromium:715893 Review-Url: https://codereview.webrtc.org/2886733002 Cr-Commit-Position: refs/heads/master@{#18229}
239 lines
8.9 KiB
C++
239 lines
8.9 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/aec3/aec_state.h"
|
|
|
|
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "webrtc/test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// Verify the general functionality of AecState
|
|
TEST(AecState, NormalUsage) {
|
|
ApmDataDumper data_dumper(42);
|
|
AecState state;
|
|
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
|
std::vector<size_t>(1, 30));
|
|
std::array<float, kFftLengthBy2Plus1> E2_main = {};
|
|
std::array<float, kFftLengthBy2Plus1> Y2 = {};
|
|
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
|
|
EchoPathVariability echo_path_variability(false, false);
|
|
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>
|
|
converged_filter_frequency_response(10);
|
|
for (auto& v : converged_filter_frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>
|
|
diverged_filter_frequency_response = converged_filter_frequency_response;
|
|
converged_filter_frequency_response[2].fill(100.f);
|
|
converged_filter_frequency_response[2][0] = 1.f;
|
|
|
|
// Verify that linear AEC usability is false when the filter is diverged and
|
|
// there is no external delay reported.
|
|
state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
|
// Verify that linear AEC usability is true when the filter is converged
|
|
std::fill(x[0].begin(), x[0].end(), 101.f);
|
|
for (int k = 0; k < 3000; ++k) {
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
}
|
|
EXPECT_TRUE(state.UsableLinearEstimate());
|
|
|
|
// Verify that linear AEC usability becomes false after an echo path change is
|
|
// reported
|
|
state.HandleEchoPathChange(EchoPathVariability(true, false));
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
|
// Verify that the active render detection works as intended.
|
|
std::fill(x[0].begin(), x[0].end(), 101.f);
|
|
state.HandleEchoPathChange(EchoPathVariability(true, true));
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
EXPECT_FALSE(state.ActiveRender());
|
|
|
|
for (int k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
}
|
|
EXPECT_TRUE(state.ActiveRender());
|
|
|
|
// Verify that echo leakage is properly reported.
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
EXPECT_FALSE(state.EchoLeakageDetected());
|
|
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], true);
|
|
EXPECT_TRUE(state.EchoLeakageDetected());
|
|
|
|
// Verify that the ERL is properly estimated
|
|
for (auto& x_k : x) {
|
|
x_k = std::vector<float>(kBlockSize, 0.f);
|
|
}
|
|
|
|
x[0][0] = 5000.f;
|
|
for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) {
|
|
render_buffer.Insert(x);
|
|
}
|
|
|
|
Y2.fill(10.f * 10000.f * 10000.f);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
}
|
|
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
|
|
EXPECT_EQ(erl[0], erl[1]);
|
|
for (size_t k = 1; k < erl.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
|
|
|
|
// Verify that the ERLE is properly estimated
|
|
E2_main.fill(1.f * 10000.f * 10000.f);
|
|
Y2.fill(10.f * E2_main[0]);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
}
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
{
|
|
const auto& erle = state.Erle();
|
|
EXPECT_EQ(erle[0], erle[1]);
|
|
constexpr size_t kLowFrequencyLimit = 32;
|
|
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1);
|
|
}
|
|
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
|
}
|
|
|
|
E2_main.fill(1.f * 10000.f * 10000.f);
|
|
Y2.fill(5.f * E2_main[0]);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
|
render_buffer, E2_main, Y2, x[0], false);
|
|
}
|
|
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
{
|
|
const auto& erle = state.Erle();
|
|
EXPECT_EQ(erle[0], erle[1]);
|
|
constexpr size_t kLowFrequencyLimit = 32;
|
|
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1);
|
|
}
|
|
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
|
}
|
|
}
|
|
|
|
// Verifies the a non-significant delay is correctly identified.
|
|
TEST(AecState, NonSignificantDelay) {
|
|
AecState state;
|
|
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
|
std::vector<size_t>(1, 30));
|
|
std::array<float, kFftLengthBy2Plus1> E2_main;
|
|
std::array<float, kFftLengthBy2Plus1> Y2;
|
|
std::array<float, kBlockSize> x;
|
|
EchoPathVariability echo_path_variability(false, false);
|
|
x.fill(0.f);
|
|
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
|
|
for (auto& v : frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
|
|
// Verify that a non-significant filter delay is identified correctly.
|
|
state.HandleEchoPathChange(echo_path_variability);
|
|
state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer,
|
|
E2_main, Y2, x, false);
|
|
EXPECT_FALSE(state.FilterDelay());
|
|
}
|
|
|
|
// Verifies the delay for a converged filter is correctly identified.
|
|
TEST(AecState, ConvergedFilterDelay) {
|
|
constexpr int kFilterLength = 10;
|
|
AecState state;
|
|
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
|
std::vector<size_t>(1, 30));
|
|
std::array<float, kFftLengthBy2Plus1> E2_main;
|
|
std::array<float, kFftLengthBy2Plus1> Y2;
|
|
std::array<float, kBlockSize> x;
|
|
EchoPathVariability echo_path_variability(false, false);
|
|
x.fill(0.f);
|
|
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
|
|
kFilterLength);
|
|
|
|
// Verify that the filter delay for a converged filter is properly identified.
|
|
for (int k = 0; k < kFilterLength; ++k) {
|
|
for (auto& v : frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
frequency_response[k].fill(100.f);
|
|
frequency_response[k][0] = 0.f;
|
|
state.HandleEchoPathChange(echo_path_variability);
|
|
state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer,
|
|
E2_main, Y2, x, false);
|
|
EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
|
|
if (k != (kFilterLength - 1)) {
|
|
EXPECT_EQ(k, state.FilterDelay());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that the externally reported delay is properly reported and converted.
|
|
TEST(AecState, ExternalDelay) {
|
|
AecState state;
|
|
std::array<float, kFftLengthBy2Plus1> E2_main;
|
|
std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
|
std::array<float, kFftLengthBy2Plus1> Y2;
|
|
std::array<float, kBlockSize> x;
|
|
E2_main.fill(0.f);
|
|
E2_shadow.fill(0.f);
|
|
Y2.fill(0.f);
|
|
x.fill(0.f);
|
|
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
|
std::vector<size_t>(1, 30));
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
|
|
for (auto& v : frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
|
|
for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
|
|
state.HandleEchoPathChange(EchoPathVariability(false, false));
|
|
state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5),
|
|
render_buffer, E2_main, Y2, x, false);
|
|
EXPECT_TRUE(state.ExternalDelay());
|
|
EXPECT_EQ(k, state.ExternalDelay());
|
|
}
|
|
|
|
// Verify that the externally reported delay is properly unset when it is no
|
|
// longer present.
|
|
state.HandleEchoPathChange(EchoPathVariability(false, false));
|
|
state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer,
|
|
E2_main, Y2, x, false);
|
|
EXPECT_FALSE(state.ExternalDelay());
|
|
}
|
|
|
|
} // namespace webrtc
|