kwiberg af476c737f RTC_[D]CHECK_op: Remove "u" suffix on integer constants
There's no longer any need to make the two arguments have the same
signedness, so we can drop the "u" suffix on literal integer
arguments.

NOPRESUBMIT=true
BUG=webrtc:6645

Review-Url: https://codereview.webrtc.org/2535593002
Cr-Commit-Position: refs/heads/master@{#15280}
2016-11-28 23:21:51 +00:00

172 lines
5.9 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/level_controller/signal_classifier.h"
#include <algorithm>
#include <numeric>
#include <vector>
#include "webrtc/base/array_view.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/level_controller/down_sampler.h"
#include "webrtc/modules/audio_processing/level_controller/noise_spectrum_estimator.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
namespace webrtc {
namespace {
void RemoveDcLevel(rtc::ArrayView<float> x) {
RTC_DCHECK_LT(0, x.size());
float mean = std::accumulate(x.data(), x.data() + x.size(), 0.f);
mean /= x.size();
for (float& v : x) {
v -= mean;
}
}
void PowerSpectrum(const OouraFft* ooura_fft,
rtc::ArrayView<const float> x,
rtc::ArrayView<float> spectrum) {
RTC_DCHECK_EQ(65, spectrum.size());
RTC_DCHECK_EQ(128, x.size());
float X[128];
std::copy(x.data(), x.data() + x.size(), X);
ooura_fft->Fft(X);
float* X_p = X;
RTC_DCHECK_EQ(X_p, &X[0]);
spectrum[0] = (*X_p) * (*X_p);
++X_p;
RTC_DCHECK_EQ(X_p, &X[1]);
spectrum[64] = (*X_p) * (*X_p);
for (int k = 1; k < 64; ++k) {
++X_p;
RTC_DCHECK_EQ(X_p, &X[2 * k]);
spectrum[k] = (*X_p) * (*X_p);
++X_p;
RTC_DCHECK_EQ(X_p, &X[2 * k + 1]);
spectrum[k] += (*X_p) * (*X_p);
}
}
webrtc::SignalClassifier::SignalType ClassifySignal(
rtc::ArrayView<const float> signal_spectrum,
rtc::ArrayView<const float> noise_spectrum,
ApmDataDumper* data_dumper) {
int num_stationary_bands = 0;
int num_highly_nonstationary_bands = 0;
// Detect stationary and highly nonstationary bands.
for (size_t k = 1; k < 40; k++) {
if (signal_spectrum[k] < 3 * noise_spectrum[k] &&
signal_spectrum[k] * 3 > noise_spectrum[k]) {
++num_stationary_bands;
} else if (signal_spectrum[k] > 9 * noise_spectrum[k]) {
++num_highly_nonstationary_bands;
}
}
data_dumper->DumpRaw("lc_num_stationary_bands", 1, &num_stationary_bands);
data_dumper->DumpRaw("lc_num_highly_nonstationary_bands", 1,
&num_highly_nonstationary_bands);
// Use the detected number of bands to classify the overall signal
// stationarity.
if (num_stationary_bands > 15) {
return SignalClassifier::SignalType::kStationary;
} else if (num_highly_nonstationary_bands > 15) {
return SignalClassifier::SignalType::kHighlyNonStationary;
} else {
return SignalClassifier::SignalType::kNonStationary;
}
}
} // namespace
SignalClassifier::FrameExtender::FrameExtender(size_t frame_size,
size_t extended_frame_size)
: x_old_(extended_frame_size - frame_size, 0.f) {}
SignalClassifier::FrameExtender::~FrameExtender() = default;
void SignalClassifier::FrameExtender::ExtendFrame(
rtc::ArrayView<const float> x,
rtc::ArrayView<float> x_extended) {
RTC_DCHECK_EQ(x_old_.size() + x.size(), x_extended.size());
std::copy(x_old_.data(), x_old_.data() + x_old_.size(), x_extended.data());
std::copy(x.data(), x.data() + x.size(), x_extended.data() + x_old_.size());
std::copy(x_extended.data() + x_extended.size() - x_old_.size(),
x_extended.data() + x_extended.size(), x_old_.data());
}
SignalClassifier::SignalClassifier(ApmDataDumper* data_dumper)
: data_dumper_(data_dumper),
down_sampler_(data_dumper_),
noise_spectrum_estimator_(data_dumper_) {
Initialize(AudioProcessing::kSampleRate48kHz);
}
SignalClassifier::~SignalClassifier() {}
void SignalClassifier::Initialize(int sample_rate_hz) {
down_sampler_.Initialize(sample_rate_hz);
noise_spectrum_estimator_.Initialize();
frame_extender_.reset(new FrameExtender(80, 128));
sample_rate_hz_ = sample_rate_hz;
initialization_frames_left_ = 2;
consistent_classification_counter_ = 3;
last_signal_type_ = SignalClassifier::SignalType::kNonStationary;
}
void SignalClassifier::Analyze(const AudioBuffer& audio,
SignalType* signal_type) {
RTC_DCHECK_EQ(audio.num_frames(), static_cast<size_t>(sample_rate_hz_ / 100));
// Compute the signal power spectrum.
float downsampled_frame[80];
down_sampler_.DownSample(rtc::ArrayView<const float>(
audio.channels_const_f()[0], audio.num_frames()),
downsampled_frame);
float extended_frame[128];
frame_extender_->ExtendFrame(downsampled_frame, extended_frame);
RemoveDcLevel(extended_frame);
float signal_spectrum[65];
PowerSpectrum(&ooura_fft_, extended_frame, signal_spectrum);
// Classify the signal based on the estimate of the noise spectrum and the
// signal spectrum estimate.
*signal_type = ClassifySignal(signal_spectrum,
noise_spectrum_estimator_.GetNoiseSpectrum(),
data_dumper_);
// Update the noise spectrum based on the signal spectrum.
noise_spectrum_estimator_.Update(signal_spectrum,
initialization_frames_left_ > 0);
// Update the number of frames until a reliable signal spectrum is achieved.
initialization_frames_left_ = std::max(0, initialization_frames_left_ - 1);
if (last_signal_type_ == *signal_type) {
consistent_classification_counter_ =
std::max(0, consistent_classification_counter_ - 1);
} else {
last_signal_type_ = *signal_type;
consistent_classification_counter_ = 3;
}
if (consistent_classification_counter_ > 0) {
*signal_type = SignalClassifier::SignalType::kNonStationary;
}
}
} // namespace webrtc