- Bug fix: the desired initial gain quickly dropped to 0 dB hence starting a call with a too low level - New tuning to make AGC2 more robust to VAD mistakes - Smarter max gain increase speed: to deal with an increased threshold of adjacent speech frames, the gain applier temporarily allows a faster gain increase to deal with a longer time spent waiting for enough speech frames in a row to be observed - Saturation protector isolated from `AdaptiveModeLevelEstimator` to simplify the unit tests for the latter (non bit-exact change) - AGC2 adaptive digital config: unnecessary params deprecated - Code readability improvements - Data dumps clean-up and better naming Bug: webrtc:7494 Change-Id: I4e36059bdf2566cc2a7e1a7e95b7430ba9ae9844 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215140 Commit-Queue: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org> Cr-Commit-Position: refs/heads/master@{#33736}
261 lines
9.8 KiB
C++
261 lines
9.8 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc2/noise_level_estimator.h"
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <numeric>
|
|
|
|
#include "api/array_view.h"
|
|
#include "common_audio/include/audio_util.h"
|
|
#include "modules/audio_processing/agc2/signal_classifier.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
constexpr int kFramesPerSecond = 100;
|
|
|
|
float FrameEnergy(const AudioFrameView<const float>& audio) {
|
|
float energy = 0.0f;
|
|
for (size_t k = 0; k < audio.num_channels(); ++k) {
|
|
float channel_energy =
|
|
std::accumulate(audio.channel(k).begin(), audio.channel(k).end(), 0.0f,
|
|
[](float a, float b) -> float { return a + b * b; });
|
|
energy = std::max(channel_energy, energy);
|
|
}
|
|
return energy;
|
|
}
|
|
|
|
float EnergyToDbfs(float signal_energy, size_t num_samples) {
|
|
const float rms = std::sqrt(signal_energy / num_samples);
|
|
return FloatS16ToDbfs(rms);
|
|
}
|
|
|
|
class NoiseLevelEstimatorImpl : public NoiseLevelEstimator {
|
|
public:
|
|
NoiseLevelEstimatorImpl(ApmDataDumper* data_dumper)
|
|
: data_dumper_(data_dumper), signal_classifier_(data_dumper) {
|
|
// Initially assume that 48 kHz will be used. `Analyze()` will detect the
|
|
// used sample rate and call `Initialize()` again if needed.
|
|
Initialize(/*sample_rate_hz=*/48000);
|
|
}
|
|
NoiseLevelEstimatorImpl(const NoiseLevelEstimatorImpl&) = delete;
|
|
NoiseLevelEstimatorImpl& operator=(const NoiseLevelEstimatorImpl&) = delete;
|
|
~NoiseLevelEstimatorImpl() = default;
|
|
|
|
float Analyze(const AudioFrameView<const float>& frame) override {
|
|
data_dumper_->DumpRaw("agc2_noise_level_estimator_hold_counter",
|
|
noise_energy_hold_counter_);
|
|
const int sample_rate_hz =
|
|
static_cast<int>(frame.samples_per_channel() * kFramesPerSecond);
|
|
if (sample_rate_hz != sample_rate_hz_) {
|
|
Initialize(sample_rate_hz);
|
|
}
|
|
const float frame_energy = FrameEnergy(frame);
|
|
if (frame_energy <= 0.f) {
|
|
RTC_DCHECK_GE(frame_energy, 0.f);
|
|
data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1);
|
|
return EnergyToDbfs(noise_energy_, frame.samples_per_channel());
|
|
}
|
|
|
|
if (first_update_) {
|
|
// Initialize the noise energy to the frame energy.
|
|
first_update_ = false;
|
|
data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1);
|
|
noise_energy_ = std::max(frame_energy, min_noise_energy_);
|
|
return EnergyToDbfs(noise_energy_, frame.samples_per_channel());
|
|
}
|
|
|
|
const SignalClassifier::SignalType signal_type =
|
|
signal_classifier_.Analyze(frame.channel(0));
|
|
data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type",
|
|
static_cast<int>(signal_type));
|
|
|
|
// Update the noise estimate in a minimum statistics-type manner.
|
|
if (signal_type == SignalClassifier::SignalType::kStationary) {
|
|
if (frame_energy > noise_energy_) {
|
|
// Leak the estimate upwards towards the frame energy if no recent
|
|
// downward update.
|
|
noise_energy_hold_counter_ =
|
|
std::max(noise_energy_hold_counter_ - 1, 0);
|
|
|
|
if (noise_energy_hold_counter_ == 0) {
|
|
constexpr float kMaxNoiseEnergyFactor = 1.01f;
|
|
noise_energy_ =
|
|
std::min(noise_energy_ * kMaxNoiseEnergyFactor, frame_energy);
|
|
}
|
|
} else {
|
|
// Update smoothly downwards with a limited maximum update magnitude.
|
|
constexpr float kMinNoiseEnergyFactor = 0.9f;
|
|
constexpr float kNoiseEnergyDeltaFactor = 0.05f;
|
|
noise_energy_ =
|
|
std::max(noise_energy_ * kMinNoiseEnergyFactor,
|
|
noise_energy_ - kNoiseEnergyDeltaFactor *
|
|
(noise_energy_ - frame_energy));
|
|
// Prevent an energy increase for the next 10 seconds.
|
|
constexpr int kNumFramesToEnergyIncreaseAllowed = 1000;
|
|
noise_energy_hold_counter_ = kNumFramesToEnergyIncreaseAllowed;
|
|
}
|
|
} else {
|
|
// TODO(bugs.webrtc.org/7494): Remove to not forget the estimated level.
|
|
// For a non-stationary signal, leak the estimate downwards in order to
|
|
// avoid estimate locking due to incorrect signal classification.
|
|
noise_energy_ = noise_energy_ * 0.99f;
|
|
}
|
|
|
|
// Ensure a minimum of the estimate.
|
|
noise_energy_ = std::max(noise_energy_, min_noise_energy_);
|
|
return EnergyToDbfs(noise_energy_, frame.samples_per_channel());
|
|
}
|
|
|
|
private:
|
|
void Initialize(int sample_rate_hz) {
|
|
sample_rate_hz_ = sample_rate_hz;
|
|
noise_energy_ = 1.0f;
|
|
first_update_ = true;
|
|
// Initialize the minimum noise energy to -84 dBFS.
|
|
min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond;
|
|
noise_energy_hold_counter_ = 0;
|
|
signal_classifier_.Initialize(sample_rate_hz);
|
|
}
|
|
|
|
ApmDataDumper* const data_dumper_;
|
|
int sample_rate_hz_;
|
|
float min_noise_energy_;
|
|
bool first_update_;
|
|
float noise_energy_;
|
|
int noise_energy_hold_counter_;
|
|
SignalClassifier signal_classifier_;
|
|
};
|
|
|
|
// Updates the noise floor with instant decay and slow attack. This tuning is
|
|
// specific for AGC2, so that (i) it can promptly increase the gain if the noise
|
|
// floor drops (instant decay) and (ii) in case of music or fast speech, due to
|
|
// which the noise floor can be overestimated, the gain reduction is slowed
|
|
// down.
|
|
float SmoothNoiseFloorEstimate(float current_estimate, float new_estimate) {
|
|
constexpr float kAttack = 0.5f;
|
|
if (current_estimate < new_estimate) {
|
|
// Attack phase.
|
|
return kAttack * new_estimate + (1.0f - kAttack) * current_estimate;
|
|
}
|
|
// Instant attack.
|
|
return new_estimate;
|
|
}
|
|
|
|
class NoiseFloorEstimator : public NoiseLevelEstimator {
|
|
public:
|
|
// Update the noise floor every 5 seconds.
|
|
static constexpr int kUpdatePeriodNumFrames = 500;
|
|
static_assert(kUpdatePeriodNumFrames >= 200,
|
|
"A too small value may cause noise level overestimation.");
|
|
static_assert(kUpdatePeriodNumFrames <= 1500,
|
|
"A too large value may make AGC2 slow at reacting to increased "
|
|
"noise levels.");
|
|
|
|
NoiseFloorEstimator(ApmDataDumper* data_dumper) : data_dumper_(data_dumper) {
|
|
// Initially assume that 48 kHz will be used. `Analyze()` will detect the
|
|
// used sample rate and call `Initialize()` again if needed.
|
|
Initialize(/*sample_rate_hz=*/48000);
|
|
}
|
|
NoiseFloorEstimator(const NoiseFloorEstimator&) = delete;
|
|
NoiseFloorEstimator& operator=(const NoiseFloorEstimator&) = delete;
|
|
~NoiseFloorEstimator() = default;
|
|
|
|
float Analyze(const AudioFrameView<const float>& frame) override {
|
|
// Detect sample rate changes.
|
|
const int sample_rate_hz =
|
|
static_cast<int>(frame.samples_per_channel() * kFramesPerSecond);
|
|
if (sample_rate_hz != sample_rate_hz_) {
|
|
Initialize(sample_rate_hz);
|
|
}
|
|
|
|
const float frame_energy = FrameEnergy(frame);
|
|
if (frame_energy <= min_noise_energy_) {
|
|
// Ignore frames when muted or below the minimum measurable energy.
|
|
data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level",
|
|
noise_energy_);
|
|
return EnergyToDbfs(noise_energy_, frame.samples_per_channel());
|
|
}
|
|
|
|
if (preliminary_noise_energy_set_) {
|
|
preliminary_noise_energy_ =
|
|
std::min(preliminary_noise_energy_, frame_energy);
|
|
} else {
|
|
preliminary_noise_energy_ = frame_energy;
|
|
preliminary_noise_energy_set_ = true;
|
|
}
|
|
data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level",
|
|
preliminary_noise_energy_);
|
|
|
|
if (counter_ == 0) {
|
|
// Full period observed.
|
|
first_period_ = false;
|
|
// Update the estimated noise floor energy with the preliminary
|
|
// estimation.
|
|
noise_energy_ = SmoothNoiseFloorEstimate(
|
|
/*current_estimate=*/noise_energy_,
|
|
/*new_estimate=*/preliminary_noise_energy_);
|
|
// Reset for a new observation period.
|
|
counter_ = kUpdatePeriodNumFrames;
|
|
preliminary_noise_energy_set_ = false;
|
|
} else if (first_period_) {
|
|
// While analyzing the signal during the initial period, continuously
|
|
// update the estimated noise energy, which is monotonic.
|
|
noise_energy_ = preliminary_noise_energy_;
|
|
counter_--;
|
|
} else {
|
|
// During the observation period it's only allowed to lower the energy.
|
|
noise_energy_ = std::min(noise_energy_, preliminary_noise_energy_);
|
|
counter_--;
|
|
}
|
|
return EnergyToDbfs(noise_energy_, frame.samples_per_channel());
|
|
}
|
|
|
|
private:
|
|
void Initialize(int sample_rate_hz) {
|
|
sample_rate_hz_ = sample_rate_hz;
|
|
first_period_ = true;
|
|
preliminary_noise_energy_set_ = false;
|
|
// Initialize the minimum noise energy to -84 dBFS.
|
|
min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond;
|
|
preliminary_noise_energy_ = min_noise_energy_;
|
|
noise_energy_ = min_noise_energy_;
|
|
counter_ = kUpdatePeriodNumFrames;
|
|
}
|
|
|
|
ApmDataDumper* const data_dumper_;
|
|
int sample_rate_hz_;
|
|
float min_noise_energy_;
|
|
bool first_period_;
|
|
bool preliminary_noise_energy_set_;
|
|
float preliminary_noise_energy_;
|
|
float noise_energy_;
|
|
int counter_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<NoiseLevelEstimator> CreateStationaryNoiseEstimator(
|
|
ApmDataDumper* data_dumper) {
|
|
return std::make_unique<NoiseLevelEstimatorImpl>(data_dumper);
|
|
}
|
|
|
|
std::unique_ptr<NoiseLevelEstimator> CreateNoiseFloorEstimator(
|
|
ApmDataDumper* data_dumper) {
|
|
return std::make_unique<NoiseFloorEstimator>(data_dumper);
|
|
}
|
|
|
|
} // namespace webrtc
|