Gustaf Ullberg 437d129ef5 AEC3: Avoid overcompensating for render onsets during dominant nearend
The ERLE is used to estimate residual echo for echo suppression. The
ERLE is reduced during far-end offset to avoid echo leakage. When there
is a strong near-end present this can cause unnecessary transparency loss.

This change adds an ERLE estimation that does not compensate for onsets and
uses it for residual echo estimation when the suppressor considers the near-end to be dominant.

Bug: webrtc:12686
Change-Id: Ida78eeacf1f95c6e62403f86ba3f2ff055898a84
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215323
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33786}
2021-04-20 12:33:02 +00:00

481 lines
19 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <algorithm>
#include <numeric>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool DeactivateInitialStateResetAtEchoPathChange() {
return field_trial::IsEnabled(
"WebRTC-Aec3DeactivateInitialStateResetKillSwitch");
}
bool FullResetAtEchoPathChange() {
return !field_trial::IsEnabled("WebRTC-Aec3AecStateFullResetKillSwitch");
}
bool SubtractorAnalyzerResetAtEchoPathChange() {
return !field_trial::IsEnabled(
"WebRTC-Aec3AecStateSubtractorAnalyzerResetKillSwitch");
}
void ComputeAvgRenderReverb(
const SpectrumBuffer& spectrum_buffer,
int delay_blocks,
float reverb_decay,
ReverbModel* reverb_model,
rtc::ArrayView<float, kFftLengthBy2Plus1> reverb_power_spectrum) {
RTC_DCHECK(reverb_model);
const size_t num_render_channels = spectrum_buffer.buffer[0].size();
int idx_at_delay =
spectrum_buffer.OffsetIndex(spectrum_buffer.read, delay_blocks);
int idx_past = spectrum_buffer.IncIndex(idx_at_delay);
std::array<float, kFftLengthBy2Plus1> X2_data;
rtc::ArrayView<const float> X2;
if (num_render_channels > 1) {
auto average_channels =
[](size_t num_render_channels,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
spectrum_band_0,
rtc::ArrayView<float, kFftLengthBy2Plus1> render_power) {
std::fill(render_power.begin(), render_power.end(), 0.f);
for (size_t ch = 0; ch < num_render_channels; ++ch) {
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
render_power[k] += spectrum_band_0[ch][k];
}
}
const float normalizer = 1.f / num_render_channels;
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
render_power[k] *= normalizer;
}
};
average_channels(num_render_channels, spectrum_buffer.buffer[idx_past],
X2_data);
reverb_model->UpdateReverbNoFreqShaping(
X2_data, /*power_spectrum_scaling=*/1.0f, reverb_decay);
average_channels(num_render_channels, spectrum_buffer.buffer[idx_at_delay],
X2_data);
X2 = X2_data;
} else {
reverb_model->UpdateReverbNoFreqShaping(
spectrum_buffer.buffer[idx_past][/*channel=*/0],
/*power_spectrum_scaling=*/1.0f, reverb_decay);
X2 = spectrum_buffer.buffer[idx_at_delay][/*channel=*/0];
}
rtc::ArrayView<const float, kFftLengthBy2Plus1> reverb_power =
reverb_model->reverb();
for (size_t k = 0; k < X2.size(); ++k) {
reverb_power_spectrum[k] = X2[k] + reverb_power[k];
}
}
} // namespace
int AecState::instance_count_ = 0;
void AecState::GetResidualEchoScaling(
rtc::ArrayView<float> residual_scaling) const {
bool filter_has_had_time_to_converge;
if (config_.filter.conservative_initial_phase) {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 1.5f * kNumBlocksPerSecond;
} else {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 0.8f * kNumBlocksPerSecond;
}
echo_audibility_.GetResidualEchoScaling(filter_has_had_time_to_converge,
residual_scaling);
}
AecState::AecState(const EchoCanceller3Config& config,
size_t num_capture_channels)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
num_capture_channels_(num_capture_channels),
deactivate_initial_state_reset_at_echo_path_change_(
DeactivateInitialStateResetAtEchoPathChange()),
full_reset_at_echo_path_change_(FullResetAtEchoPathChange()),
subtractor_analyzer_reset_at_echo_path_change_(
SubtractorAnalyzerResetAtEchoPathChange()),
initial_state_(config_),
delay_state_(config_, num_capture_channels_),
transparent_state_(TransparentMode::Create(config_)),
filter_quality_state_(config_, num_capture_channels_),
erl_estimator_(2 * kNumBlocksPerSecond),
erle_estimator_(2 * kNumBlocksPerSecond, config_, num_capture_channels_),
filter_analyzer_(config_, num_capture_channels_),
echo_audibility_(
config_.echo_audibility.use_stationarity_properties_at_init),
reverb_model_estimator_(config_, num_capture_channels_),
subtractor_output_analyzer_(num_capture_channels_) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
filter_analyzer_.Reset();
capture_signal_saturation_ = false;
strong_not_saturated_render_blocks_ = 0;
blocks_with_active_render_ = 0;
if (!deactivate_initial_state_reset_at_echo_path_change_) {
initial_state_.Reset();
}
if (transparent_state_) {
transparent_state_->Reset();
}
erle_estimator_.Reset(true);
erl_estimator_.Reset();
filter_quality_state_.Reset();
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (full_reset_at_echo_path_change_ &&
echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
} else if (echo_path_variability.gain_change) {
erle_estimator_.Reset(false);
}
if (subtractor_analyzer_reset_at_echo_path_change_) {
subtractor_output_analyzer_.HandleEchoPathChange();
}
}
void AecState::Update(
const absl::optional<DelayEstimate>& external_delay,
rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
adaptive_filter_frequency_responses,
rtc::ArrayView<const std::vector<float>> adaptive_filter_impulse_responses,
const RenderBuffer& render_buffer,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2_refined,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
rtc::ArrayView<const SubtractorOutput> subtractor_output) {
RTC_DCHECK_EQ(num_capture_channels_, Y2.size());
RTC_DCHECK_EQ(num_capture_channels_, subtractor_output.size());
RTC_DCHECK_EQ(num_capture_channels_,
adaptive_filter_frequency_responses.size());
RTC_DCHECK_EQ(num_capture_channels_,
adaptive_filter_impulse_responses.size());
// Analyze the filter outputs and filters.
bool any_filter_converged;
bool any_coarse_filter_converged;
bool all_filters_diverged;
subtractor_output_analyzer_.Update(subtractor_output, &any_filter_converged,
&any_coarse_filter_converged,
&all_filters_diverged);
bool any_filter_consistent;
float max_echo_path_gain;
filter_analyzer_.Update(adaptive_filter_impulse_responses, render_buffer,
&any_filter_consistent, &max_echo_path_gain);
// Estimate the direct path delay of the filter.
if (config_.filter.use_linear_filter) {
delay_state_.Update(filter_analyzer_.FilterDelaysBlocks(), external_delay,
strong_not_saturated_render_blocks_);
}
const std::vector<std::vector<float>>& aligned_render_block =
render_buffer.Block(-delay_state_.MinDirectPathFilterDelay())[0];
// Update render counters.
bool active_render = false;
for (size_t ch = 0; ch < aligned_render_block.size(); ++ch) {
const float render_energy = std::inner_product(
aligned_render_block[ch].begin(), aligned_render_block[ch].end(),
aligned_render_block[ch].begin(), 0.f);
if (render_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2) {
active_render = true;
break;
}
}
blocks_with_active_render_ += active_render ? 1 : 0;
strong_not_saturated_render_blocks_ +=
active_render && !SaturatedCapture() ? 1 : 0;
std::array<float, kFftLengthBy2Plus1> avg_render_spectrum_with_reverb;
ComputeAvgRenderReverb(render_buffer.GetSpectrumBuffer(),
delay_state_.MinDirectPathFilterDelay(), ReverbDecay(),
&avg_render_reverb_, avg_render_spectrum_with_reverb);
if (config_.echo_audibility.use_stationarity_properties) {
// Update the echo audibility evaluator.
echo_audibility_.Update(render_buffer, avg_render_reverb_.reverb(),
delay_state_.MinDirectPathFilterDelay(),
delay_state_.ExternalDelayReported());
}
// Update the ERL and ERLE measures.
if (initial_state_.TransitionTriggered()) {
erle_estimator_.Reset(false);
}
erle_estimator_.Update(render_buffer, adaptive_filter_frequency_responses,
avg_render_spectrum_with_reverb, Y2, E2_refined,
subtractor_output_analyzer_.ConvergedFilters());
erl_estimator_.Update(
subtractor_output_analyzer_.ConvergedFilters(),
render_buffer.Spectrum(delay_state_.MinDirectPathFilterDelay()), Y2);
// Detect and flag echo saturation.
if (config_.ep_strength.echo_can_saturate) {
saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
UsableLinearEstimate(), subtractor_output,
max_echo_path_gain);
} else {
RTC_DCHECK(!saturation_detector_.SaturatedEcho());
}
// Update the decision on whether to use the initial state parameter set.
initial_state_.Update(active_render, SaturatedCapture());
// Detect whether the transparent mode should be activated.
if (transparent_state_) {
transparent_state_->Update(
delay_state_.MinDirectPathFilterDelay(), any_filter_consistent,
any_filter_converged, any_coarse_filter_converged, all_filters_diverged,
active_render, SaturatedCapture());
}
// Analyze the quality of the filter.
filter_quality_state_.Update(active_render, TransparentModeActive(),
SaturatedCapture(), external_delay,
any_filter_converged);
// Update the reverb estimate.
const bool stationary_block =
config_.echo_audibility.use_stationarity_properties &&
echo_audibility_.IsBlockStationary();
reverb_model_estimator_.Update(
filter_analyzer_.GetAdjustedFilters(),
adaptive_filter_frequency_responses,
erle_estimator_.GetInstLinearQualityEstimates(),
delay_state_.DirectPathFilterDelays(),
filter_quality_state_.UsableLinearFilterOutputs(), stationary_block);
erle_estimator_.Dump(data_dumper_);
reverb_model_estimator_.Dump(data_dumper_.get());
data_dumper_->DumpRaw("aec3_active_render", active_render);
data_dumper_->DumpRaw("aec3_erl", Erl());
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
data_dumper_->DumpRaw("aec3_erle", Erle(/*onset_compensated=*/false)[0]);
data_dumper_->DumpRaw("aec3_erle_onset_compensated",
Erle(/*onset_compensated=*/true)[0]);
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
data_dumper_->DumpRaw("aec3_transparent_mode", TransparentModeActive());
data_dumper_->DumpRaw("aec3_filter_delay",
filter_analyzer_.MinFilterDelayBlocks());
data_dumper_->DumpRaw("aec3_any_filter_consistent", any_filter_consistent);
data_dumper_->DumpRaw("aec3_initial_state",
initial_state_.InitialStateActive());
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
data_dumper_->DumpRaw("aec3_echo_saturation", SaturatedEcho());
data_dumper_->DumpRaw("aec3_any_filter_converged", any_filter_converged);
data_dumper_->DumpRaw("aec3_any_coarse_filter_converged",
any_coarse_filter_converged);
data_dumper_->DumpRaw("aec3_all_filters_diverged", all_filters_diverged);
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
external_delay ? 1 : 0);
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
GetReverbFrequencyResponse());
data_dumper_->DumpRaw("aec3_subtractor_y2", subtractor_output[0].y2);
data_dumper_->DumpRaw("aec3_subtractor_e2_coarse",
subtractor_output[0].e2_coarse);
data_dumper_->DumpRaw("aec3_subtractor_e2_refined",
subtractor_output[0].e2_refined);
}
AecState::InitialState::InitialState(const EchoCanceller3Config& config)
: conservative_initial_phase_(config.filter.conservative_initial_phase),
initial_state_seconds_(config.filter.initial_state_seconds) {
Reset();
}
void AecState::InitialState::InitialState::Reset() {
initial_state_ = true;
strong_not_saturated_render_blocks_ = 0;
}
void AecState::InitialState::InitialState::Update(bool active_render,
bool saturated_capture) {
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
// Flag whether the initial state is still active.
bool prev_initial_state = initial_state_;
if (conservative_initial_phase_) {
initial_state_ =
strong_not_saturated_render_blocks_ < 5 * kNumBlocksPerSecond;
} else {
initial_state_ = strong_not_saturated_render_blocks_ <
initial_state_seconds_ * kNumBlocksPerSecond;
}
// Flag whether the transition from the initial state has started.
transition_triggered_ = !initial_state_ && prev_initial_state;
}
AecState::FilterDelay::FilterDelay(const EchoCanceller3Config& config,
size_t num_capture_channels)
: delay_headroom_blocks_(config.delay.delay_headroom_samples / kBlockSize),
filter_delays_blocks_(num_capture_channels, delay_headroom_blocks_),
min_filter_delay_(delay_headroom_blocks_) {}
void AecState::FilterDelay::Update(
rtc::ArrayView<const int> analyzer_filter_delay_estimates_blocks,
const absl::optional<DelayEstimate>& external_delay,
size_t blocks_with_proper_filter_adaptation) {
// Update the delay based on the external delay.
if (external_delay &&
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
external_delay_ = external_delay;
external_delay_reported_ = true;
}
// Override the estimated delay if it is not certain that the filter has had
// time to converge.
const bool delay_estimator_may_not_have_converged =
blocks_with_proper_filter_adaptation < 2 * kNumBlocksPerSecond;
if (delay_estimator_may_not_have_converged && external_delay_) {
const int delay_guess = delay_headroom_blocks_;
std::fill(filter_delays_blocks_.begin(), filter_delays_blocks_.end(),
delay_guess);
} else {
RTC_DCHECK_EQ(filter_delays_blocks_.size(),
analyzer_filter_delay_estimates_blocks.size());
std::copy(analyzer_filter_delay_estimates_blocks.begin(),
analyzer_filter_delay_estimates_blocks.end(),
filter_delays_blocks_.begin());
}
min_filter_delay_ = *std::min_element(filter_delays_blocks_.begin(),
filter_delays_blocks_.end());
}
AecState::FilteringQualityAnalyzer::FilteringQualityAnalyzer(
const EchoCanceller3Config& config,
size_t num_capture_channels)
: use_linear_filter_(config.filter.use_linear_filter),
usable_linear_filter_estimates_(num_capture_channels, false) {}
void AecState::FilteringQualityAnalyzer::Reset() {
std::fill(usable_linear_filter_estimates_.begin(),
usable_linear_filter_estimates_.end(), false);
overall_usable_linear_estimates_ = false;
filter_update_blocks_since_reset_ = 0;
}
void AecState::FilteringQualityAnalyzer::Update(
bool active_render,
bool transparent_mode,
bool saturated_capture,
const absl::optional<DelayEstimate>& external_delay,
bool any_filter_converged) {
// Update blocks counter.
const bool filter_update = active_render && !saturated_capture;
filter_update_blocks_since_reset_ += filter_update ? 1 : 0;
filter_update_blocks_since_start_ += filter_update ? 1 : 0;
// Store convergence flag when observed.
convergence_seen_ = convergence_seen_ || any_filter_converged;
// Verify requirements for achieving a decent filter. The requirements for
// filter adaptation at call startup are more restrictive than after an
// in-call reset.
const bool sufficient_data_to_converge_at_startup =
filter_update_blocks_since_start_ > kNumBlocksPerSecond * 0.4f;
const bool sufficient_data_to_converge_at_reset =
sufficient_data_to_converge_at_startup &&
filter_update_blocks_since_reset_ > kNumBlocksPerSecond * 0.2f;
// The linear filter can only be used if it has had time to converge.
overall_usable_linear_estimates_ = sufficient_data_to_converge_at_startup &&
sufficient_data_to_converge_at_reset;
// The linear filter can only be used if an external delay or convergence have
// been identified
overall_usable_linear_estimates_ =
overall_usable_linear_estimates_ && (external_delay || convergence_seen_);
// If transparent mode is on, deactivate usign the linear filter.
overall_usable_linear_estimates_ =
overall_usable_linear_estimates_ && !transparent_mode;
if (use_linear_filter_) {
std::fill(usable_linear_filter_estimates_.begin(),
usable_linear_filter_estimates_.end(),
overall_usable_linear_estimates_);
}
}
void AecState::SaturationDetector::Update(
rtc::ArrayView<const std::vector<float>> x,
bool saturated_capture,
bool usable_linear_estimate,
rtc::ArrayView<const SubtractorOutput> subtractor_output,
float echo_path_gain) {
saturated_echo_ = false;
if (!saturated_capture) {
return;
}
if (usable_linear_estimate) {
constexpr float kSaturationThreshold = 20000.f;
for (size_t ch = 0; ch < subtractor_output.size(); ++ch) {
saturated_echo_ =
saturated_echo_ ||
(subtractor_output[ch].s_refined_max_abs > kSaturationThreshold ||
subtractor_output[ch].s_coarse_max_abs > kSaturationThreshold);
}
} else {
float max_sample = 0.f;
for (auto& channel : x) {
for (float sample : channel) {
max_sample = std::max(max_sample, fabsf(sample));
}
}
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
saturated_echo_ = saturated_echo_ || peak_echo_amplitude > 32000;
}
}
} // namespace webrtc