webrtc_m130/audio/voip/test/audio_channel_unittest.cc
Markus Handell eb61b7f620 ModuleRtcRtcpImpl2: remove Module inheritance.
This change achieves an Idle Wakeup savings of 200 Hz.

ModuleRtcRtcpImpl2 had Process() logic only active if TMMBR() is
enabled in RtcpSender, which it never is. Hence the Module
inheritance could be removed. The change removes all known
dependencies of the module inheritance, and any related mentions
of ProcessThread.

Fixed: webrtc:11581
Change-Id: I440942f07187fdb9ac18186dab088633969b340e
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/222604
Reviewed-by: Tommi <tommi@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Markus Handell <handellm@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34358}
2021-06-22 14:51:04 +00:00

356 lines
15 KiB
C++

/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "audio/voip/audio_channel.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "api/audio_codecs/builtin_audio_encoder_factory.h"
#include "api/call/transport.h"
#include "api/task_queue/task_queue_factory.h"
#include "audio/voip/test/mock_task_queue.h"
#include "modules/audio_mixer/audio_mixer_impl.h"
#include "modules/audio_mixer/sine_wave_generator.h"
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
#include "rtc_base/logging.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/mock_transport.h"
namespace webrtc {
namespace {
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::Return;
using ::testing::Unused;
constexpr uint64_t kStartTime = 123456789;
constexpr uint32_t kLocalSsrc = 0xdeadc0de;
constexpr int16_t kAudioLevel = 3004; // used for sine wave level
constexpr int kPcmuPayload = 0;
class AudioChannelTest : public ::testing::Test {
public:
const SdpAudioFormat kPcmuFormat = {"pcmu", 8000, 1};
AudioChannelTest()
: fake_clock_(kStartTime), wave_generator_(1000.0, kAudioLevel) {
task_queue_factory_ = std::make_unique<MockTaskQueueFactory>(&task_queue_);
audio_mixer_ = AudioMixerImpl::Create();
encoder_factory_ = CreateBuiltinAudioEncoderFactory();
decoder_factory_ = CreateBuiltinAudioDecoderFactory();
// By default, run the queued task immediately.
ON_CALL(task_queue_, PostTask)
.WillByDefault(
Invoke([&](std::unique_ptr<QueuedTask> task) { task->Run(); }));
}
void SetUp() override { audio_channel_ = CreateAudioChannel(kLocalSsrc); }
void TearDown() override { audio_channel_ = nullptr; }
rtc::scoped_refptr<AudioChannel> CreateAudioChannel(uint32_t ssrc) {
// Use same audio mixer here for simplicity sake as we are not checking
// audio activity of RTP in our testcases. If we need to do test on audio
// signal activity then we need to assign audio mixer for each channel.
// Also this uses the same transport object for different audio channel to
// simplify network routing logic.
rtc::scoped_refptr<AudioChannel> audio_channel =
rtc::make_ref_counted<AudioChannel>(
&transport_, ssrc, task_queue_factory_.get(), audio_mixer_.get(),
decoder_factory_);
audio_channel->SetEncoder(kPcmuPayload, kPcmuFormat,
encoder_factory_->MakeAudioEncoder(
kPcmuPayload, kPcmuFormat, absl::nullopt));
audio_channel->SetReceiveCodecs({{kPcmuPayload, kPcmuFormat}});
audio_channel->StartSend();
audio_channel->StartPlay();
return audio_channel;
}
std::unique_ptr<AudioFrame> GetAudioFrame(int order) {
auto frame = std::make_unique<AudioFrame>();
frame->sample_rate_hz_ = kPcmuFormat.clockrate_hz;
frame->samples_per_channel_ = kPcmuFormat.clockrate_hz / 100; // 10 ms.
frame->num_channels_ = kPcmuFormat.num_channels;
frame->timestamp_ = frame->samples_per_channel_ * order;
wave_generator_.GenerateNextFrame(frame.get());
return frame;
}
SimulatedClock fake_clock_;
SineWaveGenerator wave_generator_;
NiceMock<MockTransport> transport_;
NiceMock<MockTaskQueue> task_queue_;
std::unique_ptr<TaskQueueFactory> task_queue_factory_;
rtc::scoped_refptr<AudioMixer> audio_mixer_;
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory_;
rtc::scoped_refptr<AudioEncoderFactory> encoder_factory_;
rtc::scoped_refptr<AudioChannel> audio_channel_;
};
// Validate RTP packet generation by feeding audio frames with sine wave.
// Resulted RTP packet is looped back into AudioChannel and gets decoded into
// audio frame to see if it has some signal to indicate its validity.
TEST_F(AudioChannelTest, PlayRtpByLocalLoop) {
auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
audio_channel_->ReceivedRTPPacket(
rtc::ArrayView<const uint8_t>(packet, length));
return true;
};
EXPECT_CALL(transport_, SendRtp).WillOnce(Invoke(loop_rtp));
auto audio_sender = audio_channel_->GetAudioSender();
audio_sender->SendAudioData(GetAudioFrame(0));
audio_sender->SendAudioData(GetAudioFrame(1));
AudioFrame empty_frame, audio_frame;
empty_frame.Mute();
empty_frame.mutable_data(); // This will zero out the data.
audio_frame.CopyFrom(empty_frame);
audio_mixer_->Mix(/*number_of_channels*/ 1, &audio_frame);
// We expect now audio frame to pick up something.
EXPECT_NE(memcmp(empty_frame.data(), audio_frame.data(),
AudioFrame::kMaxDataSizeBytes),
0);
}
// Validate assigned local SSRC is resulted in RTP packet.
TEST_F(AudioChannelTest, VerifyLocalSsrcAsAssigned) {
RtpPacketReceived rtp;
auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
rtp.Parse(packet, length);
return true;
};
EXPECT_CALL(transport_, SendRtp).WillOnce(Invoke(loop_rtp));
auto audio_sender = audio_channel_->GetAudioSender();
audio_sender->SendAudioData(GetAudioFrame(0));
audio_sender->SendAudioData(GetAudioFrame(1));
EXPECT_EQ(rtp.Ssrc(), kLocalSsrc);
}
// Check metrics after processing an RTP packet.
TEST_F(AudioChannelTest, TestIngressStatistics) {
auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
audio_channel_->ReceivedRTPPacket(
rtc::ArrayView<const uint8_t>(packet, length));
return true;
};
EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(loop_rtp));
auto audio_sender = audio_channel_->GetAudioSender();
audio_sender->SendAudioData(GetAudioFrame(0));
audio_sender->SendAudioData(GetAudioFrame(1));
AudioFrame audio_frame;
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
absl::optional<IngressStatistics> ingress_stats =
audio_channel_->GetIngressStatistics();
EXPECT_TRUE(ingress_stats);
EXPECT_EQ(ingress_stats->neteq_stats.total_samples_received, 160ULL);
EXPECT_EQ(ingress_stats->neteq_stats.concealed_samples, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.concealment_events, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.inserted_samples_for_deceleration, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.removed_samples_for_acceleration, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.silent_concealed_samples, 0ULL);
// To extract the jitter buffer length in millisecond, jitter_buffer_delay_ms
// needs to be divided by jitter_buffer_emitted_count (number of samples).
EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_delay_ms, 1600ULL);
EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_emitted_count, 160ULL);
EXPECT_GT(ingress_stats->neteq_stats.jitter_buffer_target_delay_ms, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.interruption_count, 0);
EXPECT_EQ(ingress_stats->neteq_stats.total_interruption_duration_ms, 0);
EXPECT_DOUBLE_EQ(ingress_stats->total_duration, 0.02);
// Now without any RTP pending in jitter buffer pull more.
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
// Send another RTP packet to intentionally break PLC.
audio_sender->SendAudioData(GetAudioFrame(2));
audio_sender->SendAudioData(GetAudioFrame(3));
ingress_stats = audio_channel_->GetIngressStatistics();
EXPECT_TRUE(ingress_stats);
EXPECT_EQ(ingress_stats->neteq_stats.total_samples_received, 320ULL);
EXPECT_EQ(ingress_stats->neteq_stats.concealed_samples, 168ULL);
EXPECT_EQ(ingress_stats->neteq_stats.concealment_events, 1ULL);
EXPECT_EQ(ingress_stats->neteq_stats.inserted_samples_for_deceleration, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.removed_samples_for_acceleration, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.silent_concealed_samples, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_delay_ms, 1600ULL);
EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_emitted_count, 160ULL);
EXPECT_GT(ingress_stats->neteq_stats.jitter_buffer_target_delay_ms, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.interruption_count, 0);
EXPECT_EQ(ingress_stats->neteq_stats.total_interruption_duration_ms, 0);
EXPECT_DOUBLE_EQ(ingress_stats->total_duration, 0.04);
// Pull the last RTP packet.
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
ingress_stats = audio_channel_->GetIngressStatistics();
EXPECT_TRUE(ingress_stats);
EXPECT_EQ(ingress_stats->neteq_stats.total_samples_received, 480ULL);
EXPECT_EQ(ingress_stats->neteq_stats.concealed_samples, 168ULL);
EXPECT_EQ(ingress_stats->neteq_stats.concealment_events, 1ULL);
EXPECT_EQ(ingress_stats->neteq_stats.inserted_samples_for_deceleration, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.removed_samples_for_acceleration, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.silent_concealed_samples, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_delay_ms, 3200ULL);
EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_emitted_count, 320ULL);
EXPECT_GT(ingress_stats->neteq_stats.jitter_buffer_target_delay_ms, 0ULL);
EXPECT_EQ(ingress_stats->neteq_stats.interruption_count, 0);
EXPECT_EQ(ingress_stats->neteq_stats.total_interruption_duration_ms, 0);
EXPECT_DOUBLE_EQ(ingress_stats->total_duration, 0.06);
}
// Check ChannelStatistics metric after processing RTP and RTCP packets.
TEST_F(AudioChannelTest, TestChannelStatistics) {
auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
audio_channel_->ReceivedRTPPacket(
rtc::ArrayView<const uint8_t>(packet, length));
return true;
};
auto loop_rtcp = [&](const uint8_t* packet, size_t length) {
audio_channel_->ReceivedRTCPPacket(
rtc::ArrayView<const uint8_t>(packet, length));
return true;
};
EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(loop_rtp));
EXPECT_CALL(transport_, SendRtcp).WillRepeatedly(Invoke(loop_rtcp));
// Simulate microphone giving audio frame (10 ms). This will trigger tranport
// to send RTP as handled in loop_rtp above.
auto audio_sender = audio_channel_->GetAudioSender();
audio_sender->SendAudioData(GetAudioFrame(0));
audio_sender->SendAudioData(GetAudioFrame(1));
// Simulate speaker requesting audio frame (10 ms). This will trigger VoIP
// engine to fetch audio samples from RTP packets stored in jitter buffer.
AudioFrame audio_frame;
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
// Force sending RTCP SR report in order to have remote_rtcp field available
// in channel statistics. This will trigger tranport to send RTCP as handled
// in loop_rtcp above.
audio_channel_->SendRTCPReportForTesting(kRtcpSr);
absl::optional<ChannelStatistics> channel_stats =
audio_channel_->GetChannelStatistics();
EXPECT_TRUE(channel_stats);
EXPECT_EQ(channel_stats->packets_sent, 1ULL);
EXPECT_EQ(channel_stats->bytes_sent, 160ULL);
EXPECT_EQ(channel_stats->packets_received, 1ULL);
EXPECT_EQ(channel_stats->bytes_received, 160ULL);
EXPECT_EQ(channel_stats->jitter, 0);
EXPECT_EQ(channel_stats->packets_lost, 0);
EXPECT_EQ(channel_stats->remote_ssrc.value(), kLocalSsrc);
EXPECT_TRUE(channel_stats->remote_rtcp.has_value());
EXPECT_EQ(channel_stats->remote_rtcp->jitter, 0);
EXPECT_EQ(channel_stats->remote_rtcp->packets_lost, 0);
EXPECT_EQ(channel_stats->remote_rtcp->fraction_lost, 0);
EXPECT_GT(channel_stats->remote_rtcp->last_report_received_timestamp_ms, 0);
EXPECT_FALSE(channel_stats->remote_rtcp->round_trip_time.has_value());
}
// Check ChannelStatistics RTT metric after processing RTP and RTCP packets
// using three audio channels where each represents media endpoint.
//
// 1) AC1 <- RTP/RTCP -> AC2
// 2) AC1 <- RTP/RTCP -> AC3
//
// During step 1), AC1 should be able to check RTT from AC2's SSRC.
// During step 2), AC1 should be able to check RTT from AC3's SSRC.
TEST_F(AudioChannelTest, RttIsAvailableAfterChangeOfRemoteSsrc) {
// Create AC2 and AC3.
constexpr uint32_t kAc2Ssrc = 0xdeadbeef;
constexpr uint32_t kAc3Ssrc = 0xdeafbeef;
auto ac_2 = CreateAudioChannel(kAc2Ssrc);
auto ac_3 = CreateAudioChannel(kAc3Ssrc);
auto send_recv_rtp = [&](rtc::scoped_refptr<AudioChannel> rtp_sender,
rtc::scoped_refptr<AudioChannel> rtp_receiver) {
// Setup routing logic via transport_.
auto route_rtp = [&](const uint8_t* packet, size_t length, Unused) {
rtp_receiver->ReceivedRTPPacket(rtc::MakeArrayView(packet, length));
return true;
};
ON_CALL(transport_, SendRtp).WillByDefault(route_rtp);
// This will trigger route_rtp callback via transport_.
rtp_sender->GetAudioSender()->SendAudioData(GetAudioFrame(0));
rtp_sender->GetAudioSender()->SendAudioData(GetAudioFrame(1));
// Process received RTP in receiver.
AudioFrame audio_frame;
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
// Revert to default to avoid using reference in route_rtp lambda.
ON_CALL(transport_, SendRtp).WillByDefault(Return(true));
};
auto send_recv_rtcp = [&](rtc::scoped_refptr<AudioChannel> rtcp_sender,
rtc::scoped_refptr<AudioChannel> rtcp_receiver) {
// Setup routing logic via transport_.
auto route_rtcp = [&](const uint8_t* packet, size_t length) {
rtcp_receiver->ReceivedRTCPPacket(rtc::MakeArrayView(packet, length));
return true;
};
ON_CALL(transport_, SendRtcp).WillByDefault(route_rtcp);
// This will trigger route_rtcp callback via transport_.
rtcp_sender->SendRTCPReportForTesting(kRtcpSr);
// Revert to default to avoid using reference in route_rtcp lambda.
ON_CALL(transport_, SendRtcp).WillByDefault(Return(true));
};
// AC1 <-- RTP/RTCP --> AC2
send_recv_rtp(audio_channel_, ac_2);
send_recv_rtp(ac_2, audio_channel_);
send_recv_rtcp(audio_channel_, ac_2);
send_recv_rtcp(ac_2, audio_channel_);
absl::optional<ChannelStatistics> channel_stats =
audio_channel_->GetChannelStatistics();
ASSERT_TRUE(channel_stats);
EXPECT_EQ(channel_stats->remote_ssrc, kAc2Ssrc);
ASSERT_TRUE(channel_stats->remote_rtcp);
EXPECT_GT(channel_stats->remote_rtcp->round_trip_time, 0.0);
// AC1 <-- RTP/RTCP --> AC3
send_recv_rtp(audio_channel_, ac_3);
send_recv_rtp(ac_3, audio_channel_);
send_recv_rtcp(audio_channel_, ac_3);
send_recv_rtcp(ac_3, audio_channel_);
channel_stats = audio_channel_->GetChannelStatistics();
ASSERT_TRUE(channel_stats);
EXPECT_EQ(channel_stats->remote_ssrc, kAc3Ssrc);
ASSERT_TRUE(channel_stats->remote_rtcp);
EXPECT_GT(channel_stats->remote_rtcp->round_trip_time, 0.0);
}
} // namespace
} // namespace webrtc