dtls_transport will when detecting a new fingerprint (e.g by usage of pranswer) signal DtlsTransportState::kNew. When this happen, the dtls crypto state is lost, and sctp should reconnect, srtp does this automatically in current code base. The existing behavior in dcsctp is that it will detect peer sending an init, and reconnect. But any messages sent between the dtls restart and the message arriving from the peer will be lost. This patch changes so that this case is gracefully handled by a) letting dcsctp_transport listen to dtls state this is big part of patch and involves changing the type of the underlying dtransport from rtc::PacketTransportInternal to cricket::DtlsTransportInternal. If requested, I can put this into a separate patch... b) if a dtls restart happens, delete and restart socket. Testcase that fails before patch and works after is attached. Bonus: And include-what-you-use on patch Bug: b/375327137 Change-Id: Ib78488ae75fd8aeb50d121adf464a33dabbf95e2 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/367202 Commit-Queue: Jonas Oreland <jonaso@webrtc.org> Reviewed-by: Victor Boivie <boivie@webrtc.org> Commit-Queue: Harald Alvestrand <hta@webrtc.org> Auto-Submit: Jonas Oreland <jonaso@webrtc.org> Reviewed-by: Harald Alvestrand <hta@webrtc.org> Cr-Commit-Position: refs/heads/main@{#43546}
1337 lines
56 KiB
C++
1337 lines
56 KiB
C++
/*
|
|
* Copyright 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <atomic>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "api/data_channel_interface.h"
|
|
#include "api/dtls_transport_interface.h"
|
|
#include "api/jsep.h"
|
|
#include "api/peer_connection_interface.h"
|
|
#include "api/rtc_error.h"
|
|
#include "api/scoped_refptr.h"
|
|
#include "api/sctp_transport_interface.h"
|
|
#include "api/stats/rtc_stats_report.h"
|
|
#include "api/stats/rtcstats_objects.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "p2p/base/transport_description.h"
|
|
#include "p2p/base/transport_info.h"
|
|
#include "pc/media_session.h"
|
|
#include "pc/session_description.h"
|
|
#include "pc/test/fake_rtc_certificate_generator.h"
|
|
#include "pc/test/integration_test_helpers.h"
|
|
#include "pc/test/mock_peer_connection_observers.h"
|
|
#include "rtc_base/copy_on_write_buffer.h"
|
|
#include "rtc_base/crypto_random.h"
|
|
#include "rtc_base/fake_clock.h"
|
|
#include "rtc_base/gunit.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "rtc_base/strings/string_builder.h"
|
|
#include "rtc_base/virtual_socket_server.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
// All tests in this file require SCTP support.
|
|
#ifdef WEBRTC_HAVE_SCTP
|
|
|
|
#if defined(WEBRTC_ANDROID)
|
|
// Disable heavy tests running on low-end Android devices.
|
|
#define DISABLED_ON_ANDROID(t) DISABLED_##t
|
|
#else
|
|
#define DISABLED_ON_ANDROID(t) t
|
|
#endif
|
|
|
|
class DataChannelIntegrationTest
|
|
: public PeerConnectionIntegrationBaseTest,
|
|
public ::testing::WithParamInterface<std::tuple<SdpSemantics, bool>> {
|
|
protected:
|
|
DataChannelIntegrationTest()
|
|
: PeerConnectionIntegrationBaseTest(std::get<0>(GetParam())),
|
|
allow_media_(std::get<1>(GetParam())) {}
|
|
bool allow_media() { return allow_media_; }
|
|
|
|
bool CreatePeerConnectionWrappers() {
|
|
if (allow_media_) {
|
|
return PeerConnectionIntegrationBaseTest::CreatePeerConnectionWrappers();
|
|
}
|
|
return PeerConnectionIntegrationBaseTest::
|
|
CreatePeerConnectionWrappersWithoutMediaEngine();
|
|
}
|
|
|
|
private:
|
|
// True if media is allowed to be added
|
|
const bool allow_media_;
|
|
};
|
|
|
|
// Fake clock must be set before threads are started to prevent race on
|
|
// Set/GetClockForTesting().
|
|
// To achieve that, multiple inheritance is used as a mixin pattern
|
|
// where order of construction is finely controlled.
|
|
// This also ensures peerconnection is closed before switching back to non-fake
|
|
// clock, avoiding other races and DCHECK failures such as in rtp_sender.cc.
|
|
class FakeClockForTest : public rtc::ScopedFakeClock {
|
|
protected:
|
|
FakeClockForTest() {
|
|
// Some things use a time of "0" as a special value, so we need to start out
|
|
// the fake clock at a nonzero time.
|
|
// TODO(deadbeef): Fix this.
|
|
AdvanceTime(TimeDelta::Seconds(1));
|
|
}
|
|
|
|
// Explicit handle.
|
|
ScopedFakeClock& FakeClock() { return *this; }
|
|
};
|
|
|
|
class DataChannelIntegrationTestPlanB
|
|
: public PeerConnectionIntegrationBaseTest {
|
|
protected:
|
|
DataChannelIntegrationTestPlanB()
|
|
: PeerConnectionIntegrationBaseTest(SdpSemantics::kPlanB_DEPRECATED) {}
|
|
};
|
|
|
|
class DataChannelIntegrationTestUnifiedPlan
|
|
: public PeerConnectionIntegrationBaseTest {
|
|
protected:
|
|
DataChannelIntegrationTestUnifiedPlan()
|
|
: PeerConnectionIntegrationBaseTest(SdpSemantics::kUnifiedPlan) {}
|
|
};
|
|
|
|
void MakeActiveSctpOffer(std::unique_ptr<SessionDescriptionInterface>& desc) {
|
|
auto& transport_infos = desc->description()->transport_infos();
|
|
for (auto& transport_info : transport_infos) {
|
|
transport_info.description.connection_role = cricket::CONNECTIONROLE_ACTIVE;
|
|
}
|
|
}
|
|
|
|
// This test causes a PeerConnection to enter Disconnected state, and
|
|
// sends data on a DataChannel while disconnected.
|
|
// The data should be surfaced when the connection reestablishes.
|
|
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnected) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
std::string data1 = "hello first";
|
|
caller()->data_channel()->Send(DataBuffer(data1));
|
|
EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Cause a network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
EXPECT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
|
|
caller()->standardized_ice_connection_state(),
|
|
kDefaultTimeout);
|
|
std::string data2 = "hello second";
|
|
caller()->data_channel()->Send(DataBuffer(data2));
|
|
// Remove the network outage. The connection should reestablish.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// This test causes a PeerConnection to enter Disconnected state,
|
|
// sends data on a DataChannel while disconnected, and then triggers
|
|
// an ICE restart.
|
|
// The data should be surfaced when the connection reestablishes.
|
|
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnectedIceRestart) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
std::string data1 = "hello first";
|
|
caller()->data_channel()->Send(DataBuffer(data1));
|
|
EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Cause a network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
ASSERT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
|
|
caller()->standardized_ice_connection_state(),
|
|
kDefaultTimeout);
|
|
std::string data2 = "hello second";
|
|
caller()->data_channel()->Send(DataBuffer(data2));
|
|
|
|
// Trigger an ICE restart. The signaling channel is not affected by
|
|
// the network outage.
|
|
caller()->SetOfferAnswerOptions(IceRestartOfferAnswerOptions());
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Remove the network outage. The connection should reestablish.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// This test sets up a call between two parties with audio, video and an SCTP
|
|
// data channel.
|
|
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannel) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
if (allow_media()) {
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
}
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
if (allow_media()) {
|
|
// Ensure the existence of the SCTP data channel didn't impede audio/video.
|
|
MediaExpectations media_expectations;
|
|
media_expectations.ExpectBidirectionalAudioAndVideo();
|
|
ASSERT_TRUE(ExpectNewFrames(media_expectations));
|
|
}
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Ensure data can be sent in both directions.
|
|
std::string data = "hello world";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// This test sets up a call between two parties with an SCTP
|
|
// data channel only, and sends messages of various sizes.
|
|
TEST_P(DataChannelIntegrationTest,
|
|
EndToEndCallWithSctpDataChannelVariousSizes) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
for (int message_size = 1; message_size < 100000; message_size *= 2) {
|
|
std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
// Specifically probe the area around the MTU size.
|
|
for (int message_size = 1100; message_size < 1300; message_size += 1) {
|
|
std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
caller()->data_channel()->Close();
|
|
|
|
EXPECT_EQ_WAIT(caller()->data_observer()->state(),
|
|
webrtc::DataChannelInterface::kClosed, kDefaultTimeout);
|
|
EXPECT_EQ_WAIT(callee()->data_observer()->state(),
|
|
webrtc::DataChannelInterface::kClosed, kDefaultTimeout);
|
|
}
|
|
|
|
// This test sets up a call between two parties with an SCTP
|
|
// data channel only, and sends enough messages to fill the queue and then
|
|
// closes on the caller. We expect the state to transition to closed on both
|
|
// caller and callee.
|
|
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannelFullBuffer) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
std::string data(256 * 1024, 'a');
|
|
for (size_t queued_size = 0;
|
|
queued_size < webrtc::DataChannelInterface::MaxSendQueueSize();
|
|
queued_size += data.size()) {
|
|
caller()->data_channel()->SendAsync(DataBuffer(data), nullptr);
|
|
}
|
|
|
|
caller()->data_channel()->Close();
|
|
|
|
DataChannelInterface::DataState expected_states[] = {
|
|
DataChannelInterface::DataState::kConnecting,
|
|
DataChannelInterface::DataState::kOpen,
|
|
DataChannelInterface::DataState::kClosing,
|
|
DataChannelInterface::DataState::kClosed};
|
|
|
|
// Debug data channels are very slow, use a long timeout for those slow,
|
|
// heavily parallelized runs.
|
|
EXPECT_EQ_WAIT(DataChannelInterface::DataState::kClosed,
|
|
caller()->data_observer()->state(), kLongTimeout);
|
|
EXPECT_THAT(caller()->data_observer()->states(),
|
|
::testing::ElementsAreArray(expected_states));
|
|
|
|
EXPECT_EQ_WAIT(DataChannelInterface::DataState::kClosed,
|
|
callee()->data_observer()->state(), kDefaultTimeout);
|
|
EXPECT_THAT(callee()->data_observer()->states(),
|
|
::testing::ElementsAreArray(expected_states));
|
|
}
|
|
|
|
// This test sets up a call between two parties with an SCTP
|
|
// data channel only, and sends empty messages
|
|
TEST_P(DataChannelIntegrationTest,
|
|
EndToEndCallWithSctpDataChannelEmptyMessages) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Ensure data can be sent in both directions.
|
|
// Sending empty string data
|
|
std::string data = "";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(callee()->data_observer()->last_message().empty());
|
|
EXPECT_FALSE(callee()->data_observer()->messages().back().binary);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(1u, caller()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(caller()->data_observer()->last_message().empty());
|
|
EXPECT_FALSE(caller()->data_observer()->messages().back().binary);
|
|
|
|
// Sending empty binary data
|
|
rtc::CopyOnWriteBuffer empty_buffer;
|
|
caller()->data_channel()->Send(DataBuffer(empty_buffer, true));
|
|
EXPECT_EQ_WAIT(2u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(callee()->data_observer()->last_message().empty());
|
|
EXPECT_TRUE(callee()->data_observer()->messages().back().binary);
|
|
callee()->data_channel()->Send(DataBuffer(empty_buffer, true));
|
|
EXPECT_EQ_WAIT(2u, caller()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(caller()->data_observer()->last_message().empty());
|
|
EXPECT_TRUE(caller()->data_observer()->messages().back().binary);
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest,
|
|
EndToEndCallWithSctpDataChannelLowestSafeMtu) {
|
|
// The lowest payload size limit that's tested and found safe for this
|
|
// application. Note that this is not the safe limit under all conditions;
|
|
// in particular, the default is not the largest DTLS signature, and
|
|
// this test does not use TURN.
|
|
const size_t kLowestSafePayloadSizeLimit = 1225;
|
|
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit);
|
|
for (int message_size = 1140; message_size < 1240; message_size += 1) {
|
|
std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
ASSERT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
ASSERT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
}
|
|
|
|
// This test verifies that lowering the MTU of the connection will cause
|
|
// the datachannel to not transmit reliably.
|
|
// The purpose of this test is to ensure that we know how a too-small MTU
|
|
// error manifests itself.
|
|
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannelHarmfulMtu) {
|
|
// The lowest payload size limit that's tested and found safe for this
|
|
// application in this configuration (see test above).
|
|
const size_t kLowestSafePayloadSizeLimit = 1225;
|
|
// The size of the smallest message that fails to be delivered.
|
|
const size_t kMessageSizeThatIsNotDelivered = 1157;
|
|
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit - 1);
|
|
// Probe for an undelivered or slowly delivered message. The exact
|
|
// size limit seems to be dependent on the message history, so make the
|
|
// code easily able to find the current value.
|
|
bool failure_seen = false;
|
|
for (size_t message_size = 1110; message_size < 1400; message_size++) {
|
|
const size_t message_count =
|
|
callee()->data_observer()->received_message_count();
|
|
const std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
// Wait a very short time for the message to be delivered.
|
|
// Note: Waiting only 10 ms is too short for Windows bots; they will
|
|
// flakily fail at a random frame.
|
|
WAIT(callee()->data_observer()->received_message_count() > message_count,
|
|
100);
|
|
if (callee()->data_observer()->received_message_count() == message_count) {
|
|
ASSERT_EQ(kMessageSizeThatIsNotDelivered, message_size);
|
|
failure_seen = true;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT_TRUE(failure_seen);
|
|
}
|
|
|
|
// Ensure that when the callee closes an SCTP data channel, the closing
|
|
// procedure results in the data channel being closed for the caller as well.
|
|
TEST_P(DataChannelIntegrationTest, CalleeClosesSctpDataChannel) {
|
|
// Same procedure as above test.
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
if (allow_media()) {
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
}
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Close the data channel on the callee side, and wait for it to reach the
|
|
// "closed" state on both sides.
|
|
callee()->data_channel()->Close();
|
|
|
|
DataChannelInterface::DataState expected_states[] = {
|
|
DataChannelInterface::DataState::kConnecting,
|
|
DataChannelInterface::DataState::kOpen,
|
|
DataChannelInterface::DataState::kClosing,
|
|
DataChannelInterface::DataState::kClosed};
|
|
|
|
EXPECT_EQ_WAIT(DataChannelInterface::DataState::kClosed,
|
|
caller()->data_observer()->state(), kDefaultTimeout);
|
|
EXPECT_THAT(caller()->data_observer()->states(),
|
|
::testing::ElementsAreArray(expected_states));
|
|
|
|
EXPECT_EQ_WAIT(DataChannelInterface::DataState::kClosed,
|
|
callee()->data_observer()->state(), kDefaultTimeout);
|
|
EXPECT_THAT(callee()->data_observer()->states(),
|
|
::testing::ElementsAreArray(expected_states));
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, SctpDataChannelConfigSentToOtherSide) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
DataChannelInit init;
|
|
init.id = 53;
|
|
init.maxRetransmits = 52;
|
|
caller()->CreateDataChannel("data-channel", &init);
|
|
if (allow_media()) {
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
}
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
// Since "negotiated" is false, the "id" parameter should be ignored.
|
|
EXPECT_NE(init.id, callee()->data_channel()->id());
|
|
EXPECT_EQ("data-channel", callee()->data_channel()->label());
|
|
EXPECT_EQ(init.maxRetransmits, callee()->data_channel()->maxRetransmits());
|
|
EXPECT_FALSE(callee()->data_channel()->negotiated());
|
|
}
|
|
|
|
// Test sctp's ability to process unordered data stream, where data actually
|
|
// arrives out of order using simulated delays. Previously there have been some
|
|
// bugs in this area.
|
|
TEST_P(DataChannelIntegrationTest, StressTestUnorderedSctpDataChannel) {
|
|
// Introduce random network delays.
|
|
// Otherwise it's not a true "unordered" test.
|
|
virtual_socket_server()->set_delay_mean(20);
|
|
virtual_socket_server()->set_delay_stddev(5);
|
|
virtual_socket_server()->UpdateDelayDistribution();
|
|
// Normal procedure, but with unordered data channel config.
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
DataChannelInit init;
|
|
init.ordered = false;
|
|
caller()->CreateDataChannel(&init);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
static constexpr int kNumMessages = 100;
|
|
// Deliberately chosen to be larger than the MTU so messages get fragmented.
|
|
static constexpr size_t kMaxMessageSize = 4096;
|
|
// Create and send random messages.
|
|
std::vector<std::string> sent_messages;
|
|
for (int i = 0; i < kNumMessages; ++i) {
|
|
size_t length =
|
|
(rand() % kMaxMessageSize) + 1; // NOLINT (rand_r instead of rand)
|
|
std::string message;
|
|
ASSERT_TRUE(rtc::CreateRandomString(length, &message));
|
|
caller()->data_channel()->Send(DataBuffer(message));
|
|
callee()->data_channel()->Send(DataBuffer(message));
|
|
sent_messages.push_back(message);
|
|
}
|
|
|
|
// Wait for all messages to be received.
|
|
EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
|
|
caller()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
|
|
callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
|
|
// Sort and compare to make sure none of the messages were corrupted.
|
|
std::vector<std::string> caller_received_messages;
|
|
absl::c_transform(caller()->data_observer()->messages(),
|
|
std::back_inserter(caller_received_messages),
|
|
[](const auto& a) { return a.data; });
|
|
|
|
std::vector<std::string> callee_received_messages;
|
|
absl::c_transform(callee()->data_observer()->messages(),
|
|
std::back_inserter(callee_received_messages),
|
|
[](const auto& a) { return a.data; });
|
|
|
|
absl::c_sort(sent_messages);
|
|
absl::c_sort(caller_received_messages);
|
|
absl::c_sort(callee_received_messages);
|
|
EXPECT_EQ(sent_messages, caller_received_messages);
|
|
EXPECT_EQ(sent_messages, callee_received_messages);
|
|
}
|
|
|
|
// Repeatedly open and close data channels on a peer connection to check that
|
|
// the channels are properly negotiated and SCTP stream IDs properly recycled.
|
|
TEST_P(DataChannelIntegrationTest, StressTestOpenCloseChannelNoDelay) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
|
|
int channel_id = 0;
|
|
const size_t kChannelCount = 8;
|
|
const size_t kIterations = 10;
|
|
bool has_negotiated = false;
|
|
|
|
DataChannelInit init;
|
|
for (size_t repeats = 0; repeats < kIterations; ++repeats) {
|
|
RTC_LOG(LS_INFO) << "Iteration " << (repeats + 1) << "/" << kIterations;
|
|
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
rtc::StringBuilder sb;
|
|
sb << "channel-" << channel_id++;
|
|
caller()->CreateDataChannel(sb.Release(), &init);
|
|
}
|
|
ASSERT_EQ(caller()->data_channels().size(), kChannelCount);
|
|
|
|
if (!has_negotiated) {
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
has_negotiated = true;
|
|
}
|
|
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
ASSERT_EQ_WAIT(caller()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kOpen, kDefaultTimeout);
|
|
RTC_LOG(LS_INFO) << "Caller Channel "
|
|
<< caller()->data_channels()[i]->label() << " with id "
|
|
<< caller()->data_channels()[i]->id() << " is open.";
|
|
}
|
|
ASSERT_EQ_WAIT(callee()->data_channels().size(), kChannelCount,
|
|
kDefaultTimeout);
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
ASSERT_EQ_WAIT(callee()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kOpen, kDefaultTimeout);
|
|
RTC_LOG(LS_INFO) << "Callee Channel "
|
|
<< callee()->data_channels()[i]->label() << " with id "
|
|
<< callee()->data_channels()[i]->id() << " is open.";
|
|
}
|
|
|
|
// Closing from both sides to attempt creating races.
|
|
// A real application would likely only close from one side.
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
if (i % 3 == 0) {
|
|
callee()->data_channels()[i]->Close();
|
|
caller()->data_channels()[i]->Close();
|
|
} else {
|
|
caller()->data_channels()[i]->Close();
|
|
callee()->data_channels()[i]->Close();
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
ASSERT_EQ_WAIT(caller()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kClosed, kDefaultTimeout);
|
|
ASSERT_EQ_WAIT(callee()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kClosed, kDefaultTimeout);
|
|
}
|
|
|
|
caller()->data_channels().clear();
|
|
caller()->data_observers().clear();
|
|
callee()->data_channels().clear();
|
|
callee()->data_observers().clear();
|
|
}
|
|
}
|
|
|
|
// Repeatedly open and close data channels on a peer connection to check that
|
|
// the channels are properly negotiated and SCTP stream IDs properly recycled.
|
|
// Some delay is added for better coverage.
|
|
TEST_P(DataChannelIntegrationTest, StressTestOpenCloseChannelWithDelay) {
|
|
// Simulate some network delay
|
|
virtual_socket_server()->set_delay_mean(20);
|
|
virtual_socket_server()->set_delay_stddev(5);
|
|
virtual_socket_server()->UpdateDelayDistribution();
|
|
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
|
|
int channel_id = 0;
|
|
const size_t kChannelCount = 8;
|
|
const size_t kIterations = 10;
|
|
bool has_negotiated = false;
|
|
|
|
DataChannelInit init;
|
|
for (size_t repeats = 0; repeats < kIterations; ++repeats) {
|
|
RTC_LOG(LS_INFO) << "Iteration " << (repeats + 1) << "/" << kIterations;
|
|
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
rtc::StringBuilder sb;
|
|
sb << "channel-" << channel_id++;
|
|
caller()->CreateDataChannel(sb.Release(), &init);
|
|
}
|
|
ASSERT_EQ(caller()->data_channels().size(), kChannelCount);
|
|
|
|
if (!has_negotiated) {
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
has_negotiated = true;
|
|
}
|
|
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
ASSERT_EQ_WAIT(caller()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kOpen, kDefaultTimeout);
|
|
RTC_LOG(LS_INFO) << "Caller Channel "
|
|
<< caller()->data_channels()[i]->label() << " with id "
|
|
<< caller()->data_channels()[i]->id() << " is open.";
|
|
}
|
|
ASSERT_EQ_WAIT(callee()->data_channels().size(), kChannelCount,
|
|
kDefaultTimeout);
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
ASSERT_EQ_WAIT(callee()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kOpen, kDefaultTimeout);
|
|
RTC_LOG(LS_INFO) << "Callee Channel "
|
|
<< callee()->data_channels()[i]->label() << " with id "
|
|
<< callee()->data_channels()[i]->id() << " is open.";
|
|
}
|
|
|
|
// Closing from both sides to attempt creating races.
|
|
// A real application would likely only close from one side.
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
if (i % 3 == 0) {
|
|
callee()->data_channels()[i]->Close();
|
|
caller()->data_channels()[i]->Close();
|
|
} else {
|
|
caller()->data_channels()[i]->Close();
|
|
callee()->data_channels()[i]->Close();
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < kChannelCount; ++i) {
|
|
ASSERT_EQ_WAIT(caller()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kClosed, kDefaultTimeout);
|
|
ASSERT_EQ_WAIT(callee()->data_channels()[i]->state(),
|
|
DataChannelInterface::DataState::kClosed, kDefaultTimeout);
|
|
}
|
|
|
|
caller()->data_channels().clear();
|
|
caller()->data_observers().clear();
|
|
callee()->data_channels().clear();
|
|
callee()->data_observers().clear();
|
|
}
|
|
}
|
|
|
|
// This test sets up a call between two parties with audio, and video. When
|
|
// audio and video are setup and flowing, an SCTP data channel is negotiated.
|
|
TEST_P(DataChannelIntegrationTest, AddSctpDataChannelInSubsequentOffer) {
|
|
// This test can't be performed without media.
|
|
if (!allow_media()) {
|
|
return;
|
|
}
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Do initial offer/answer with audio/video.
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Create data channel and do new offer and answer.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
// Ensure data can be sent in both directions.
|
|
std::string data = "hello world";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// Set up a connection initially just using SCTP data channels, later
|
|
// upgrading to audio/video, ensuring frames are received end-to-end.
|
|
// Effectively the inverse of the test above. This was broken in M57; see
|
|
// https://crbug.com/711243
|
|
TEST_P(DataChannelIntegrationTest, SctpDataChannelToAudioVideoUpgrade) {
|
|
// This test can't be performed without media.
|
|
if (!allow_media()) {
|
|
return;
|
|
}
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Do initial offer/answer with just data channel.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Wait until data can be sent over the data channel.
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Do subsequent offer/answer with two-way audio and video. Audio and video
|
|
// should end up bundled on the DTLS/ICE transport already used for data.
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
MediaExpectations media_expectations;
|
|
media_expectations.ExpectBidirectionalAudioAndVideo();
|
|
ASSERT_TRUE(ExpectNewFrames(media_expectations));
|
|
}
|
|
|
|
static void MakeSpecCompliantSctpOffer(
|
|
std::unique_ptr<SessionDescriptionInterface>& desc) {
|
|
cricket::SctpDataContentDescription* dcd_offer =
|
|
GetFirstSctpDataContentDescription(desc->description());
|
|
// See https://crbug.com/webrtc/11211 - this function is a no-op
|
|
ASSERT_TRUE(dcd_offer);
|
|
dcd_offer->set_use_sctpmap(false);
|
|
dcd_offer->set_protocol("UDP/DTLS/SCTP");
|
|
}
|
|
|
|
// Test that the data channel works when a spec-compliant SCTP m= section is
|
|
// offered (using "a=sctp-port" instead of "a=sctpmap", and using
|
|
// "UDP/DTLS/SCTP" as the protocol).
|
|
TEST_P(DataChannelIntegrationTest,
|
|
DataChannelWorksWhenSpecCompliantSctpOfferReceived) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->SetGeneratedSdpMunger(MakeSpecCompliantSctpOffer);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Ensure data can be sent in both directions.
|
|
std::string data = "hello world";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// Test that after closing PeerConnections, they stop sending any packets
|
|
// (ICE, DTLS, RTP...).
|
|
TEST_P(DataChannelIntegrationTest, ClosingConnectionStopsPacketFlow) {
|
|
// This test can't be performed without media.
|
|
if (!allow_media()) {
|
|
return;
|
|
}
|
|
// Set up audio/video/data, wait for some frames to be received.
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->AddAudioVideoTracks();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
MediaExpectations media_expectations;
|
|
media_expectations.CalleeExpectsSomeAudioAndVideo();
|
|
ASSERT_TRUE(ExpectNewFrames(media_expectations));
|
|
// Close PeerConnections.
|
|
ClosePeerConnections();
|
|
// Pump messages for a second, and ensure no new packets end up sent.
|
|
uint32_t sent_packets_a = virtual_socket_server()->sent_packets();
|
|
WAIT(false, 1000);
|
|
uint32_t sent_packets_b = virtual_socket_server()->sent_packets();
|
|
EXPECT_EQ(sent_packets_a, sent_packets_b);
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, DtlsRoleIsSetNormally) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
ASSERT_FALSE(caller()->pc()->GetSctpTransport());
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE(caller()->pc()->GetSctpTransport());
|
|
ASSERT_TRUE(
|
|
caller()->pc()->GetSctpTransport()->Information().dtls_transport());
|
|
EXPECT_TRUE(caller()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role());
|
|
EXPECT_EQ(caller()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role(),
|
|
DtlsTransportTlsRole::kServer);
|
|
EXPECT_EQ(callee()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role(),
|
|
DtlsTransportTlsRole::kClient);
|
|
// ID should be assigned according to the odd/even rule based on role;
|
|
// client gets even numbers, server gets odd ones. RFC 8832 section 6.
|
|
// TODO(hta): Test multiple channels.
|
|
EXPECT_EQ(caller()->data_channel()->id(), 1);
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, DtlsRoleIsSetWhenReversed) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
callee()->SetReceivedSdpMunger(MakeActiveSctpOffer);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE(caller()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role());
|
|
EXPECT_EQ(caller()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role(),
|
|
DtlsTransportTlsRole::kClient);
|
|
EXPECT_EQ(callee()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role(),
|
|
DtlsTransportTlsRole::kServer);
|
|
// ID should be assigned according to the odd/even rule based on role;
|
|
// client gets even numbers, server gets odd ones. RFC 8832 section 6.
|
|
// TODO(hta): Test multiple channels.
|
|
EXPECT_EQ(caller()->data_channel()->id(), 0);
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest,
|
|
DtlsRoleIsSetWhenReversedWithChannelCollision) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
|
|
callee()->SetReceivedSdpMunger(
|
|
[this](std::unique_ptr<SessionDescriptionInterface>& desc) {
|
|
MakeActiveSctpOffer(desc);
|
|
callee()->CreateDataChannel();
|
|
});
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_EQ_WAIT(callee()->data_channels().size(), 2U, kDefaultTimeout);
|
|
ASSERT_EQ_WAIT(caller()->data_channels().size(), 2U, kDefaultTimeout);
|
|
EXPECT_TRUE(caller()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role());
|
|
EXPECT_EQ(caller()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role(),
|
|
DtlsTransportTlsRole::kClient);
|
|
EXPECT_EQ(callee()
|
|
->pc()
|
|
->GetSctpTransport()
|
|
->Information()
|
|
.dtls_transport()
|
|
->Information()
|
|
.role(),
|
|
DtlsTransportTlsRole::kServer);
|
|
// ID should be assigned according to the odd/even rule based on role;
|
|
// client gets even numbers, server gets odd ones. RFC 8832 section 6.
|
|
ASSERT_EQ(caller()->data_channels().size(), 2U);
|
|
ASSERT_EQ(callee()->data_channels().size(), 2U);
|
|
EXPECT_EQ(caller()->data_channels()[0]->id(), 0);
|
|
EXPECT_EQ(caller()->data_channels()[1]->id(), 1);
|
|
EXPECT_EQ(callee()->data_channels()[0]->id(), 1);
|
|
EXPECT_EQ(callee()->data_channels()[1]->id(), 0);
|
|
}
|
|
|
|
// Test that transport stats are generated by the RTCStatsCollector for a
|
|
// connection that only involves data channels. This is a regression test for
|
|
// crbug.com/826972.
|
|
TEST_P(DataChannelIntegrationTest,
|
|
TransportStatsReportedForDataChannelOnlyConnection) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
|
|
auto caller_report = caller()->NewGetStats();
|
|
EXPECT_EQ(1u, caller_report->GetStatsOfType<RTCTransportStats>().size());
|
|
auto callee_report = callee()->NewGetStats();
|
|
EXPECT_EQ(1u, callee_report->GetStatsOfType<RTCTransportStats>().size());
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, QueuedPacketsGetDeliveredInReliableMode) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
|
|
caller()->data_channel()->Send(DataBuffer("hello first"));
|
|
ASSERT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
// Cause a temporary network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
for (int i = 1; i <= 10; i++) {
|
|
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
|
|
}
|
|
// Nothing should be delivered during outage. Short wait.
|
|
EXPECT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(), 10);
|
|
// Reverse outage
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
// All packets should be delivered.
|
|
EXPECT_EQ_WAIT(11u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, QueuedPacketsGetDroppedInUnreliableMode) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
DataChannelInit init;
|
|
init.maxRetransmits = 0;
|
|
init.ordered = false;
|
|
caller()->CreateDataChannel(&init);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
caller()->data_channel()->Send(DataBuffer("hello first"));
|
|
ASSERT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
// Cause a temporary network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
// Send a few packets. Note that all get dropped only when all packets
|
|
// fit into the receiver receive window/congestion window, so that they
|
|
// actually get sent.
|
|
for (int i = 1; i <= 10; i++) {
|
|
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
|
|
}
|
|
// Nothing should be delivered during outage.
|
|
// We do a short wait to verify that delivery count is still 1.
|
|
WAIT(false, 10);
|
|
EXPECT_EQ(1u, callee()->data_observer()->received_message_count());
|
|
// Reverse the network outage.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
// Send a new packet, and wait for it to be delivered.
|
|
caller()->data_channel()->Send(DataBuffer("After block"));
|
|
EXPECT_EQ_WAIT("After block", callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Some messages should be lost, but first and last message should have
|
|
// been delivered.
|
|
// First, check that the protocol guarantee is preserved.
|
|
EXPECT_GT(11u, callee()->data_observer()->received_message_count());
|
|
EXPECT_LE(2u, callee()->data_observer()->received_message_count());
|
|
// Then, check that observed behavior (lose all messages) has not changed
|
|
EXPECT_EQ(2u, callee()->data_observer()->received_message_count());
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest,
|
|
QueuedPacketsGetDroppedInLifetimeLimitedMode) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
DataChannelInit init;
|
|
init.maxRetransmitTime = 1;
|
|
init.ordered = false;
|
|
caller()->CreateDataChannel(&init);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
caller()->data_channel()->Send(DataBuffer("hello first"));
|
|
ASSERT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
// Cause a temporary network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
for (int i = 1; i <= 200; i++) {
|
|
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
|
|
}
|
|
// Nothing should be delivered during outage.
|
|
// We do a short wait to verify that delivery count is still 1,
|
|
// and to make sure max packet lifetime (which is in ms) is exceeded.
|
|
WAIT(false, 10);
|
|
EXPECT_EQ(1u, callee()->data_observer()->received_message_count());
|
|
// Reverse the network outage.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
// Send a new packet, and wait for it to be delivered.
|
|
caller()->data_channel()->Send(DataBuffer("After block"));
|
|
EXPECT_EQ_WAIT("After block", callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Some messages should be lost, but first and last message should have
|
|
// been delivered.
|
|
// First, check that the protocol guarantee is preserved.
|
|
EXPECT_GT(202u, callee()->data_observer()->received_message_count());
|
|
EXPECT_LE(2u, callee()->data_observer()->received_message_count());
|
|
// Then, check that observed behavior (lose some messages) has not changed
|
|
// DcSctp loses all messages. This is correct.
|
|
EXPECT_EQ(2u, callee()->data_observer()->received_message_count());
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest,
|
|
DISABLED_ON_ANDROID(SomeQueuedPacketsGetDroppedInMaxRetransmitsMode)) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
DataChannelInit init;
|
|
init.maxRetransmits = 0;
|
|
init.ordered = false;
|
|
caller()->CreateDataChannel(&init);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
caller()->data_channel()->Send(DataBuffer("hello first"));
|
|
ASSERT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
// Cause a temporary network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
// Fill the SCTP socket buffer until queued data starts to build.
|
|
constexpr size_t kBufferedDataInSctpSocket = 2'000'000;
|
|
size_t packet_counter = 0;
|
|
while (caller()->data_channel()->buffered_amount() <
|
|
kBufferedDataInSctpSocket &&
|
|
packet_counter < 10000) {
|
|
packet_counter++;
|
|
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
|
|
}
|
|
if (caller()->data_channel()->buffered_amount() > kBufferedDataInSctpSocket) {
|
|
RTC_LOG(LS_INFO) << "Buffered data after " << packet_counter << " packets";
|
|
} else {
|
|
RTC_LOG(LS_INFO) << "No buffered data after " << packet_counter
|
|
<< " packets";
|
|
}
|
|
// Nothing should be delivered during outage.
|
|
// We do a short wait to verify that delivery count is still 1.
|
|
WAIT(false, 10);
|
|
EXPECT_EQ(1u, callee()->data_observer()->received_message_count());
|
|
// Reverse the network outage.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
// Send a new packet, and wait for it to be delivered.
|
|
caller()->data_channel()->Send(DataBuffer("After block"));
|
|
EXPECT_EQ_WAIT("After block", callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Some messages should be lost, but first and last message should have
|
|
// been delivered.
|
|
// Due to the fact that retransmissions are only counted when the packet
|
|
// goes on the wire, NOT when they are stalled in queue due to
|
|
// congestion, we expect some of the packets to be delivered, because
|
|
// congestion prevented them from being sent.
|
|
// Citation: https://tools.ietf.org/html/rfc7496#section-3.1
|
|
|
|
// First, check that the protocol guarantee is preserved.
|
|
EXPECT_GT(packet_counter,
|
|
callee()->data_observer()->received_message_count());
|
|
EXPECT_LE(2u, callee()->data_observer()->received_message_count());
|
|
// Then, check that observed behavior (lose between 100 and 200 messages)
|
|
// has not changed.
|
|
// Usrsctp behavior is different on Android (177) and other platforms (122).
|
|
// Dcsctp loses 432 packets.
|
|
EXPECT_GT(2 + packet_counter - 100,
|
|
callee()->data_observer()->received_message_count());
|
|
EXPECT_LT(2 + packet_counter - 500,
|
|
callee()->data_observer()->received_message_count());
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(DataChannelIntegrationTest,
|
|
DataChannelIntegrationTest,
|
|
Combine(Values(SdpSemantics::kPlanB_DEPRECATED,
|
|
SdpSemantics::kUnifiedPlan),
|
|
testing::Bool()));
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
EndToEndCallWithBundledSctpDataChannel) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->pc()->GetSctpTransport(), kDefaultTimeout);
|
|
ASSERT_EQ_WAIT(SctpTransportState::kConnected,
|
|
caller()->pc()->GetSctpTransport()->Information().state(),
|
|
kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
EndToEndCallWithDataChannelOnlyConnects) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE(caller()->data_observer()->IsOpen());
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan, DataChannelClosesWhenClosed) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
caller()->data_channel()->Close();
|
|
ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
DataChannelClosesWhenClosedReverse) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
callee()->data_channel()->Close();
|
|
ASSERT_TRUE_WAIT(!caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
DataChannelClosesWhenPeerConnectionClosed) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
caller()->pc()->Close();
|
|
ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan, DtlsRestart) {
|
|
RTCConfiguration config;
|
|
ASSERT_TRUE(CreatePeerConnectionWrappersWithConfig(config, config));
|
|
PeerConnectionDependencies dependencies(nullptr);
|
|
std::unique_ptr<FakeRTCCertificateGenerator> cert_generator(
|
|
new FakeRTCCertificateGenerator());
|
|
cert_generator->use_alternate_key();
|
|
dependencies.cert_generator = std::move(cert_generator);
|
|
auto callee2 = CreatePeerConnectionWrapper("Callee2", nullptr, &config,
|
|
std::move(dependencies), nullptr,
|
|
/*reset_encoder_factory=*/false,
|
|
/*reset_decoder_factory=*/false);
|
|
ConnectFakeSignaling();
|
|
|
|
DataChannelInit dc_init;
|
|
dc_init.negotiated = true;
|
|
dc_init.id = 77;
|
|
caller()->CreateDataChannel("label", &dc_init);
|
|
callee()->CreateDataChannel("label", &dc_init);
|
|
callee2->CreateDataChannel("label", &dc_init);
|
|
|
|
std::unique_ptr<SessionDescriptionInterface> offer;
|
|
callee()->SetReceivedSdpMunger(
|
|
[&](std::unique_ptr<SessionDescriptionInterface>& sdp) {
|
|
offer = sdp->Clone();
|
|
});
|
|
callee()->SetGeneratedSdpMunger(
|
|
[](std::unique_ptr<SessionDescriptionInterface>& sdp) {
|
|
SetSdpType(sdp, SdpType::kPrAnswer);
|
|
});
|
|
std::unique_ptr<SessionDescriptionInterface> answer;
|
|
caller()->SetReceivedSdpMunger(
|
|
[&](std::unique_ptr<SessionDescriptionInterface>& sdp) {
|
|
answer = sdp->Clone();
|
|
});
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_FALSE(HasFailure());
|
|
EXPECT_EQ(caller()->pc()->signaling_state(),
|
|
PeerConnectionInterface::kHaveRemotePrAnswer);
|
|
EXPECT_EQ(callee()->pc()->signaling_state(),
|
|
PeerConnectionInterface::kHaveLocalPrAnswer);
|
|
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, caller()->data_channel()->state(),
|
|
kDefaultTimeout);
|
|
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, callee()->data_channel()->state(),
|
|
kDefaultTimeout);
|
|
|
|
callee2->set_signaling_message_receiver(caller());
|
|
|
|
std::atomic<int> caller_sent_on_dc(0);
|
|
caller()->set_connection_change_callback(
|
|
[&](PeerConnectionInterface::PeerConnectionState new_state) {
|
|
if (new_state ==
|
|
PeerConnectionInterface::PeerConnectionState::kConnected) {
|
|
caller()->data_channel()->SendAsync(
|
|
DataBuffer("KESO"), [&](RTCError err) {
|
|
caller_sent_on_dc.store(err.ok() ? 1 : -1);
|
|
});
|
|
}
|
|
});
|
|
|
|
std::atomic<int> callee2_sent_on_dc(0);
|
|
callee2->set_connection_change_callback(
|
|
[&](PeerConnectionInterface::PeerConnectionState new_state) {
|
|
if (new_state ==
|
|
PeerConnectionInterface::PeerConnectionState::kConnected &&
|
|
callee2->data_channel()->state() == DataChannelInterface::kOpen) {
|
|
callee2->data_channel()->SendAsync(
|
|
DataBuffer("KENT"), [&](RTCError err) {
|
|
callee2_sent_on_dc.store(err.ok() ? 1 : -1);
|
|
});
|
|
}
|
|
});
|
|
|
|
callee2->data_observer()->set_state_change_callback(
|
|
[&](DataChannelInterface::DataState new_state) {
|
|
if (callee2->pc()->peer_connection_state() ==
|
|
PeerConnectionInterface::PeerConnectionState::kConnected &&
|
|
new_state == DataChannelInterface::kOpen) {
|
|
callee2->data_channel()->SendAsync(
|
|
DataBuffer("KENT"), [&](RTCError err) {
|
|
callee2_sent_on_dc.store(err.ok() ? 1 : -1);
|
|
});
|
|
}
|
|
});
|
|
|
|
std::string offer_sdp;
|
|
EXPECT_TRUE(offer->ToString(&offer_sdp));
|
|
callee2->ReceiveSdpMessage(SdpType::kOffer, offer_sdp);
|
|
EXPECT_EQ(caller()->pc()->signaling_state(),
|
|
PeerConnectionInterface::kStable);
|
|
EXPECT_EQ(callee2->pc()->signaling_state(), PeerConnectionInterface::kStable);
|
|
|
|
EXPECT_EQ_WAIT(PeerConnectionInterface::PeerConnectionState::kConnected,
|
|
caller()->pc()->peer_connection_state(), kDefaultTimeout);
|
|
EXPECT_EQ_WAIT(PeerConnectionInterface::PeerConnectionState::kConnected,
|
|
callee2->pc()->peer_connection_state(), kDefaultTimeout);
|
|
|
|
ASSERT_TRUE_WAIT(caller_sent_on_dc.load() != 0, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee2_sent_on_dc.load() != 0, kDefaultTimeout);
|
|
EXPECT_EQ_WAIT("KENT", caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
EXPECT_EQ_WAIT("KESO", callee2->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
#endif // WEBRTC_HAVE_SCTP
|
|
|
|
} // namespace
|
|
|
|
} // namespace webrtc
|