webrtc_m130/modules/video_coding/packet_buffer_unittest.cc
thebongy d23d04163d Fix to allow small negative jumps due to out of order packets in packet buffer
This resolves an issue where when packets appear out of order at the
beginning of a stream, packet_buffer.cc might drop the entire packet
buffer because it detects a "large negative jump" even though the
difference in sequence numbers is very minor and is caused by network
congestion / packet re-ordering. Currently, when the issue occurs, this
can cause video corruption/artifacts. More details and reproduction is
available on the attached webrtc bug report 390329776.

Bug: webrtc:390329776
Change-Id: Idb56eb2e066d596d8afd7ec904359baf0cb3feef
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/374540
Reviewed-by: Sergey Silkin <ssilkin@webrtc.org>
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#43753}
2025-01-17 00:52:36 -08:00

865 lines
31 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/packet_buffer.h"
#include <cstring>
#include <limits>
#include <ostream>
#include <string>
#include <utility>
#include "api/array_view.h"
#include "common_video/h264/h264_common.h"
#include "modules/rtp_rtcp/source/frame_object.h"
#include "rtc_base/numerics/sequence_number_unwrapper.h"
#include "rtc_base/random.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace video_coding {
namespace {
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::IsEmpty;
using ::testing::Matches;
using ::testing::Pointee;
using ::testing::SizeIs;
constexpr int kStartSize = 16;
constexpr int kMaxSize = 64;
void IgnoreResult(PacketBuffer::InsertResult /*result*/) {}
// Validates frame boundaries are valid and returns first sequence_number for
// each frame.
std::vector<uint16_t> StartSeqNums(
rtc::ArrayView<const std::unique_ptr<PacketBuffer::Packet>> packets) {
std::vector<uint16_t> result;
bool frame_boundary = true;
for (const auto& packet : packets) {
EXPECT_EQ(frame_boundary, packet->is_first_packet_in_frame());
if (packet->is_first_packet_in_frame()) {
result.push_back(packet->seq_num());
}
frame_boundary = packet->is_last_packet_in_frame();
}
EXPECT_TRUE(frame_boundary);
return result;
}
MATCHER_P(StartSeqNumsAre, seq_num, "") {
return Matches(ElementsAre(seq_num))(StartSeqNums(arg.packets));
}
MATCHER_P2(StartSeqNumsAre, seq_num1, seq_num2, "") {
return Matches(ElementsAre(seq_num1, seq_num2))(StartSeqNums(arg.packets));
}
MATCHER(KeyFrame, "") {
return arg->is_first_packet_in_frame() &&
arg->video_header.frame_type == VideoFrameType::kVideoFrameKey;
}
MATCHER(DeltaFrame, "") {
return arg->is_first_packet_in_frame() &&
arg->video_header.frame_type == VideoFrameType::kVideoFrameDelta;
}
struct PacketBufferInsertResult : public PacketBuffer::InsertResult {
explicit PacketBufferInsertResult(PacketBuffer::InsertResult result)
: InsertResult(std::move(result)) {}
};
void PrintTo(const PacketBufferInsertResult& result, std::ostream* os) {
*os << "frames: { ";
for (const auto& packet : result.packets) {
if (packet->is_first_packet_in_frame() &&
packet->is_last_packet_in_frame()) {
*os << "{sn: " << packet->seq_num() << " }";
} else if (packet->is_first_packet_in_frame()) {
*os << "{sn: [" << packet->seq_num() << "-";
} else if (packet->is_last_packet_in_frame()) {
*os << packet->seq_num() << "] }, ";
}
}
*os << " }";
if (result.buffer_cleared) {
*os << ", buffer_cleared";
}
}
class PacketBufferTest : public ::testing::Test {
protected:
PacketBufferTest() : rand_(0x7732213), packet_buffer_(kStartSize, kMaxSize) {}
uint16_t Rand() { return rand_.Rand<uint16_t>(); }
enum IsKeyFrame { kKeyFrame, kDeltaFrame };
enum IsFirst { kFirst, kNotFirst };
enum IsLast { kLast, kNotLast };
PacketBufferInsertResult Insert(int64_t seq_num, // packet sequence number
IsKeyFrame keyframe, // is keyframe
IsFirst first, // is first packet of frame
IsLast last, // is last packet of frame
rtc::ArrayView<const uint8_t> data = {},
uint32_t timestamp = 123u) { // rtp timestamp
auto packet = std::make_unique<PacketBuffer::Packet>();
packet->video_header.codec = kVideoCodecGeneric;
packet->timestamp = timestamp;
packet->sequence_number = seq_num;
packet->video_header.frame_type = keyframe == kKeyFrame
? VideoFrameType::kVideoFrameKey
: VideoFrameType::kVideoFrameDelta;
packet->video_header.is_first_packet_in_frame = first == kFirst;
packet->video_header.is_last_packet_in_frame = last == kLast;
packet->video_payload.SetData(data.data(), data.size());
return PacketBufferInsertResult(
packet_buffer_.InsertPacket(std::move(packet)));
}
Random rand_;
PacketBuffer packet_buffer_;
};
TEST_F(PacketBufferTest, InsertOnePacket) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kLast).packets, SizeIs(1));
}
TEST_F(PacketBufferTest, InsertMultiplePackets) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kLast).packets, SizeIs(1));
EXPECT_THAT(Insert(seq_num + 1, kKeyFrame, kFirst, kLast).packets, SizeIs(1));
EXPECT_THAT(Insert(seq_num + 2, kKeyFrame, kFirst, kLast).packets, SizeIs(1));
EXPECT_THAT(Insert(seq_num + 3, kKeyFrame, kFirst, kLast).packets, SizeIs(1));
}
TEST_F(PacketBufferTest, InsertDuplicatePacket) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kNotLast).packets, IsEmpty());
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kNotLast).packets, IsEmpty());
EXPECT_THAT(Insert(seq_num + 1, kKeyFrame, kNotFirst, kLast).packets,
SizeIs(2));
}
TEST_F(PacketBufferTest, SeqNumWrapOneFrame) {
Insert(0xFFFF, kKeyFrame, kFirst, kNotLast);
EXPECT_THAT(Insert(0x1'0000, kKeyFrame, kNotFirst, kLast),
StartSeqNumsAre(0xFFFF));
}
TEST_F(PacketBufferTest, SeqNumWrapTwoFrames) {
EXPECT_THAT(Insert(0xFFFF, kKeyFrame, kFirst, kLast),
StartSeqNumsAre(0xFFFF));
EXPECT_THAT(Insert(0x1'0000, kKeyFrame, kFirst, kLast), StartSeqNumsAre(0x0));
}
TEST_F(PacketBufferTest, InsertOldPackets) {
EXPECT_THAT(Insert(100, kKeyFrame, kFirst, kNotLast).packets, IsEmpty());
EXPECT_THAT(Insert(102, kDeltaFrame, kFirst, kLast).packets, SizeIs(1));
EXPECT_THAT(Insert(101, kKeyFrame, kNotFirst, kLast).packets, SizeIs(2));
EXPECT_THAT(Insert(100, kKeyFrame, kFirst, kNotLast).packets, IsEmpty());
EXPECT_THAT(Insert(100, kKeyFrame, kFirst, kNotLast).packets, IsEmpty());
EXPECT_THAT(Insert(102, kDeltaFrame, kFirst, kLast).packets, SizeIs(1));
packet_buffer_.ClearTo(102);
EXPECT_THAT(Insert(102, kDeltaFrame, kFirst, kLast).packets, IsEmpty());
EXPECT_THAT(Insert(103, kDeltaFrame, kFirst, kLast).packets, SizeIs(1));
}
TEST_F(PacketBufferTest, FrameSize) {
const int64_t seq_num = Rand();
uint8_t data1[5] = {};
uint8_t data2[5] = {};
uint8_t data3[5] = {};
uint8_t data4[5] = {};
Insert(seq_num, kKeyFrame, kFirst, kNotLast, data1);
Insert(seq_num + 1, kKeyFrame, kNotFirst, kNotLast, data2);
Insert(seq_num + 2, kKeyFrame, kNotFirst, kNotLast, data3);
auto packets =
Insert(seq_num + 3, kKeyFrame, kNotFirst, kLast, data4).packets;
// Expect one frame of 4 packets.
EXPECT_THAT(StartSeqNums(packets), ElementsAre(seq_num));
EXPECT_THAT(packets, SizeIs(4));
}
TEST_F(PacketBufferTest, ExpandBuffer) {
const int64_t seq_num = Rand();
Insert(seq_num, kKeyFrame, kFirst, kNotLast);
for (int i = 1; i < kStartSize; ++i)
EXPECT_FALSE(
Insert(seq_num + i, kKeyFrame, kNotFirst, kNotLast).buffer_cleared);
// Already inserted kStartSize number of packets, inserting the last packet
// should increase the buffer size and also result in an assembled frame.
EXPECT_FALSE(
Insert(seq_num + kStartSize, kKeyFrame, kNotFirst, kLast).buffer_cleared);
}
TEST_F(PacketBufferTest, SingleFrameExpandsBuffer) {
const int64_t seq_num = Rand();
Insert(seq_num, kKeyFrame, kFirst, kNotLast);
for (int i = 1; i < kStartSize; ++i)
Insert(seq_num + i, kKeyFrame, kNotFirst, kNotLast);
EXPECT_THAT(Insert(seq_num + kStartSize, kKeyFrame, kNotFirst, kLast),
StartSeqNumsAre(seq_num));
}
TEST_F(PacketBufferTest, ExpandBufferOverflow) {
const int64_t seq_num = Rand();
EXPECT_FALSE(Insert(seq_num, kKeyFrame, kFirst, kNotLast).buffer_cleared);
for (int i = 1; i < kMaxSize; ++i)
EXPECT_FALSE(
Insert(seq_num + i, kKeyFrame, kNotFirst, kNotLast).buffer_cleared);
// Already inserted kMaxSize number of packets, inserting the last packet
// should overflow the buffer and result in false being returned.
EXPECT_TRUE(
Insert(seq_num + kMaxSize, kKeyFrame, kNotFirst, kLast).buffer_cleared);
}
TEST_F(PacketBufferTest, OnePacketOneFrame) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kLast),
StartSeqNumsAre(seq_num));
}
TEST_F(PacketBufferTest, TwoPacketsTwoFrames) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kLast),
StartSeqNumsAre(seq_num));
EXPECT_THAT(Insert(seq_num + 1, kKeyFrame, kFirst, kLast),
StartSeqNumsAre(seq_num + 1));
}
TEST_F(PacketBufferTest, TwoPacketsOneFrames) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kNotLast).packets, IsEmpty());
EXPECT_THAT(Insert(seq_num + 1, kKeyFrame, kNotFirst, kLast),
StartSeqNumsAre(seq_num));
}
TEST_F(PacketBufferTest, ThreePacketReorderingOneFrame) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kNotLast).packets, IsEmpty());
EXPECT_THAT(Insert(seq_num + 2, kKeyFrame, kNotFirst, kLast).packets,
IsEmpty());
EXPECT_THAT(Insert(seq_num + 1, kKeyFrame, kNotFirst, kNotLast),
StartSeqNumsAre(seq_num));
}
TEST_F(PacketBufferTest, Frames) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kLast),
StartSeqNumsAre(seq_num));
EXPECT_THAT(Insert(seq_num + 1, kDeltaFrame, kFirst, kLast),
StartSeqNumsAre(seq_num + 1));
EXPECT_THAT(Insert(seq_num + 2, kDeltaFrame, kFirst, kLast),
StartSeqNumsAre(seq_num + 2));
EXPECT_THAT(Insert(seq_num + 3, kDeltaFrame, kFirst, kLast),
StartSeqNumsAre(seq_num + 3));
}
TEST_F(PacketBufferTest, ClearSinglePacket) {
const int64_t seq_num = Rand();
for (int i = 0; i < kMaxSize; ++i)
Insert(seq_num + i, kDeltaFrame, kFirst, kLast);
packet_buffer_.ClearTo(seq_num);
EXPECT_FALSE(
Insert(seq_num + kMaxSize, kDeltaFrame, kFirst, kLast).buffer_cleared);
}
TEST_F(PacketBufferTest, ClearPacketBeforeFullyReceivedFrame) {
Insert(0, kKeyFrame, kFirst, kNotLast);
Insert(1, kKeyFrame, kNotFirst, kNotLast);
packet_buffer_.ClearTo(0);
EXPECT_THAT(Insert(2, kKeyFrame, kNotFirst, kLast).packets, IsEmpty());
}
TEST_F(PacketBufferTest, ClearFullBuffer) {
for (int i = 0; i < kMaxSize; ++i)
Insert(i, kDeltaFrame, kFirst, kLast);
packet_buffer_.ClearTo(kMaxSize - 1);
for (int i = kMaxSize; i < 2 * kMaxSize; ++i)
EXPECT_FALSE(Insert(i, kDeltaFrame, kFirst, kLast).buffer_cleared);
}
TEST_F(PacketBufferTest, DontClearNewerPacket) {
EXPECT_THAT(Insert(0, kKeyFrame, kFirst, kLast), StartSeqNumsAre(0));
packet_buffer_.ClearTo(0);
EXPECT_THAT(Insert(2 * kStartSize, kKeyFrame, kFirst, kLast),
StartSeqNumsAre(2 * kStartSize));
EXPECT_THAT(Insert(3 * kStartSize + 1, kKeyFrame, kFirst, kNotLast).packets,
IsEmpty());
packet_buffer_.ClearTo(2 * kStartSize);
EXPECT_THAT(Insert(3 * kStartSize + 2, kKeyFrame, kNotFirst, kLast),
StartSeqNumsAre(3 * kStartSize + 1));
}
TEST_F(PacketBufferTest, OneIncompleteFrame) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num, kDeltaFrame, kFirst, kNotLast).packets,
IsEmpty());
EXPECT_THAT(Insert(seq_num + 1, kDeltaFrame, kNotFirst, kLast),
StartSeqNumsAre(seq_num));
EXPECT_THAT(Insert(seq_num - 1, kDeltaFrame, kNotFirst, kLast).packets,
IsEmpty());
}
TEST_F(PacketBufferTest, TwoIncompleteFramesFullBuffer) {
const int64_t seq_num = Rand();
for (int i = 1; i < kMaxSize - 1; ++i)
Insert(seq_num + i, kDeltaFrame, kNotFirst, kNotLast);
EXPECT_THAT(Insert(seq_num, kDeltaFrame, kFirst, kNotLast).packets,
IsEmpty());
EXPECT_THAT(Insert(seq_num - 1, kDeltaFrame, kNotFirst, kLast).packets,
IsEmpty());
}
TEST_F(PacketBufferTest, FramesReordered) {
const int64_t seq_num = Rand();
EXPECT_THAT(Insert(seq_num + 1, kDeltaFrame, kFirst, kLast),
StartSeqNumsAre(seq_num + 1));
EXPECT_THAT(Insert(seq_num, kKeyFrame, kFirst, kLast),
StartSeqNumsAre(seq_num));
EXPECT_THAT(Insert(seq_num + 3, kDeltaFrame, kFirst, kLast),
StartSeqNumsAre(seq_num + 3));
EXPECT_THAT(Insert(seq_num + 2, kDeltaFrame, kFirst, kLast),
StartSeqNumsAre(seq_num + 2));
}
TEST_F(PacketBufferTest, FramesReorderedReconstruction) {
Insert(100, kKeyFrame, kFirst, kNotLast, {}, 2);
Insert(98, kKeyFrame, kFirst, kNotLast, {}, 1);
EXPECT_THAT(Insert(99, kDeltaFrame, kNotFirst, kLast, {}, 1),
StartSeqNumsAre(98));
// Ideally frame with timestamp 2, seq No 100 should be
// reconstructed here from the first Insert() call in the test
EXPECT_THAT(Insert(101, kDeltaFrame, kNotFirst, kLast, {}, 2),
StartSeqNumsAre(100));
}
TEST_F(PacketBufferTest, InsertPacketAfterSequenceNumberWrapAround) {
int64_t kFirstSeqNum = 0;
uint32_t kTimestampDelta = 100;
uint32_t timestamp = 10000;
int64_t seq_num = kFirstSeqNum;
// Loop until seq_num wraps around.
while (seq_num < std::numeric_limits<uint16_t>::max()) {
Insert(seq_num++, kKeyFrame, kFirst, kNotLast, {}, timestamp);
for (int i = 0; i < 5; ++i) {
Insert(seq_num++, kKeyFrame, kNotFirst, kNotLast, {}, timestamp);
}
Insert(seq_num++, kKeyFrame, kNotFirst, kLast, {}, timestamp);
timestamp += kTimestampDelta;
}
// Receive frame with overlapping sequence numbers.
Insert(seq_num++, kKeyFrame, kFirst, kNotLast, {}, timestamp);
for (int i = 0; i < 5; ++i) {
Insert(seq_num++, kKeyFrame, kNotFirst, kNotLast, {}, timestamp);
}
auto packets =
Insert(seq_num++, kKeyFrame, kNotFirst, kLast, {}, timestamp).packets;
// One frame of 7 packets.
EXPECT_THAT(StartSeqNums(packets), SizeIs(1));
EXPECT_THAT(packets, SizeIs(7));
}
// If `sps_pps_idr_is_keyframe` is true, we require keyframes to contain
// SPS/PPS/IDR and the keyframes we create as part of the test do contain
// SPS/PPS/IDR. If `sps_pps_idr_is_keyframe` is false, we only require and
// create keyframes containing only IDR.
class PacketBufferH264Test : public PacketBufferTest {
protected:
explicit PacketBufferH264Test(bool sps_pps_idr_is_keyframe)
: PacketBufferTest(), sps_pps_idr_is_keyframe_(sps_pps_idr_is_keyframe) {
if (sps_pps_idr_is_keyframe) {
packet_buffer_.ForceSpsPpsIdrIsH264Keyframe();
}
}
PacketBufferInsertResult InsertH264(
int64_t seq_num, // packet sequence number
IsKeyFrame keyframe, // is keyframe
IsFirst first, // is first packet of frame
IsLast last, // is last packet of frame
uint32_t timestamp, // rtp timestamp
rtc::ArrayView<const uint8_t> data = {},
uint32_t width = 0, // width of frame (SPS/IDR)
uint32_t height = 0, // height of frame (SPS/IDR)
bool generic = false) { // has generic descriptor
auto packet = std::make_unique<PacketBuffer::Packet>();
packet->video_header.codec = kVideoCodecH264;
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
packet->sequence_number = seq_num;
packet->timestamp = timestamp;
if (keyframe == kKeyFrame) {
if (sps_pps_idr_is_keyframe_) {
h264_header.nalus = {{H264::NaluType::kSps},
{H264::NaluType::kPps},
{H264::NaluType::kIdr}};
} else {
h264_header.nalus = {{H264::NaluType::kIdr}};
}
}
packet->video_header.width = width;
packet->video_header.height = height;
packet->video_header.is_first_packet_in_frame = first == kFirst;
packet->video_header.is_last_packet_in_frame = last == kLast;
if (generic) {
packet->video_header.generic.emplace();
}
packet->video_payload.SetData(data.data(), data.size());
return PacketBufferInsertResult(
packet_buffer_.InsertPacket(std::move(packet)));
}
PacketBufferInsertResult InsertH264KeyFrameWithAud(
int64_t seq_num, // packet sequence number
IsKeyFrame keyframe, // is keyframe
IsFirst first, // is first packet of frame
IsLast last, // is last packet of frame
uint32_t timestamp, // rtp timestamp
rtc::ArrayView<const uint8_t> data = {},
uint32_t width = 0, // width of frame (SPS/IDR)
uint32_t height = 0) { // height of frame (SPS/IDR)
auto packet = std::make_unique<PacketBuffer::Packet>();
packet->video_header.codec = kVideoCodecH264;
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
packet->sequence_number = seq_num;
packet->timestamp = timestamp;
// this should be the start of frame.
RTC_CHECK(first == kFirst);
// Insert a AUD NALU / packet without width/height.
h264_header.nalus = {{H264::NaluType::kAud}};
packet->video_header.is_first_packet_in_frame = true;
packet->video_header.is_last_packet_in_frame = false;
IgnoreResult(packet_buffer_.InsertPacket(std::move(packet)));
// insert IDR
return InsertH264(seq_num + 1, keyframe, kNotFirst, last, timestamp, data,
width, height);
}
const bool sps_pps_idr_is_keyframe_;
};
// This fixture is used to test the general behaviour of the packet buffer
// in both configurations.
class PacketBufferH264ParameterizedTest
: public ::testing::WithParamInterface<bool>,
public PacketBufferH264Test {
protected:
PacketBufferH264ParameterizedTest() : PacketBufferH264Test(GetParam()) {}
};
INSTANTIATE_TEST_SUITE_P(SpsPpsIdrIsKeyframe,
PacketBufferH264ParameterizedTest,
::testing::Bool());
TEST_P(PacketBufferH264ParameterizedTest, DontRemoveMissingPacketOnClearTo) {
InsertH264(0, kKeyFrame, kFirst, kLast, 0);
InsertH264(2, kDeltaFrame, kFirst, kNotLast, 2);
packet_buffer_.ClearTo(0);
// Expect no frame because of missing of packet #1
EXPECT_THAT(InsertH264(3, kDeltaFrame, kNotFirst, kLast, 2).packets,
IsEmpty());
}
TEST_P(PacketBufferH264ParameterizedTest, GetBitstreamOneFrameFullBuffer) {
uint8_t data_arr[kStartSize][1];
uint8_t expected[kStartSize];
for (uint8_t i = 0; i < kStartSize; ++i) {
data_arr[i][0] = i;
expected[i] = i;
}
InsertH264(0, kKeyFrame, kFirst, kNotLast, 1, data_arr[0]);
for (uint8_t i = 1; i < kStartSize - 1; ++i) {
InsertH264(i, kKeyFrame, kNotFirst, kNotLast, 1, data_arr[i]);
}
auto packets = InsertH264(kStartSize - 1, kKeyFrame, kNotFirst, kLast, 1,
data_arr[kStartSize - 1])
.packets;
ASSERT_THAT(StartSeqNums(packets), ElementsAre(0));
EXPECT_THAT(packets, SizeIs(kStartSize));
for (size_t i = 0; i < packets.size(); ++i) {
EXPECT_THAT(packets[i]->video_payload, SizeIs(1)) << "Packet #" << i;
}
}
TEST_P(PacketBufferH264ParameterizedTest, GetBitstreamBufferPadding) {
int64_t seq_num = Rand();
rtc::CopyOnWriteBuffer data = "some plain old data";
auto packet = std::make_unique<PacketBuffer::Packet>();
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus = {{H264::NaluType::kIdr}};
h264_header.packetization_type = kH264SingleNalu;
packet->sequence_number = seq_num;
packet->video_header.codec = kVideoCodecH264;
packet->video_payload = data;
packet->video_header.is_first_packet_in_frame = true;
packet->video_header.is_last_packet_in_frame = true;
auto frames = packet_buffer_.InsertPacket(std::move(packet)).packets;
ASSERT_THAT(frames, SizeIs(1));
EXPECT_EQ(frames[0]->sequence_number, seq_num);
EXPECT_EQ(frames[0]->video_payload, data);
}
TEST_P(PacketBufferH264ParameterizedTest, FrameResolution) {
int64_t seq_num = 100;
uint8_t data[] = "some plain old data";
uint32_t width = 640;
uint32_t height = 360;
uint32_t timestamp = 1000;
auto packets = InsertH264(seq_num, kKeyFrame, kFirst, kLast, timestamp, data,
width, height)
.packets;
ASSERT_THAT(packets, SizeIs(1));
EXPECT_EQ(packets[0]->video_header.width, width);
EXPECT_EQ(packets[0]->video_header.height, height);
}
TEST_P(PacketBufferH264ParameterizedTest, FrameResolutionNaluBeforeSPS) {
int64_t seq_num = 100;
uint8_t data[] = "some plain old data";
uint32_t width = 640;
uint32_t height = 360;
uint32_t timestamp = 1000;
auto packets = InsertH264KeyFrameWithAud(seq_num, kKeyFrame, kFirst, kLast,
timestamp, data, width, height)
.packets;
ASSERT_THAT(StartSeqNums(packets), ElementsAre(seq_num));
EXPECT_EQ(packets[0]->video_header.width, width);
EXPECT_EQ(packets[0]->video_header.height, height);
}
TEST_F(PacketBufferTest, FreeSlotsOnFrameCreation) {
const int64_t seq_num = Rand();
Insert(seq_num, kKeyFrame, kFirst, kNotLast);
Insert(seq_num + 1, kDeltaFrame, kNotFirst, kNotLast);
EXPECT_THAT(Insert(seq_num + 2, kDeltaFrame, kNotFirst, kLast),
StartSeqNumsAre(seq_num));
// Insert frame that fills the whole buffer.
Insert(seq_num + 3, kKeyFrame, kFirst, kNotLast);
for (int i = 0; i < kMaxSize - 2; ++i)
Insert(seq_num + i + 4, kDeltaFrame, kNotFirst, kNotLast);
EXPECT_THAT(Insert(seq_num + kMaxSize + 2, kKeyFrame, kNotFirst, kLast),
StartSeqNumsAre(seq_num + 3));
}
TEST_F(PacketBufferTest, Clear) {
const int64_t seq_num = Rand();
Insert(seq_num, kKeyFrame, kFirst, kNotLast);
Insert(seq_num + 1, kDeltaFrame, kNotFirst, kNotLast);
EXPECT_THAT(Insert(seq_num + 2, kDeltaFrame, kNotFirst, kLast),
StartSeqNumsAre(seq_num));
packet_buffer_.Clear();
Insert(seq_num + kStartSize, kKeyFrame, kFirst, kNotLast);
Insert(seq_num + kStartSize + 1, kDeltaFrame, kNotFirst, kNotLast);
EXPECT_THAT(Insert(seq_num + kStartSize + 2, kDeltaFrame, kNotFirst, kLast),
StartSeqNumsAre(seq_num + kStartSize));
}
TEST_F(PacketBufferTest, FramesAfterClear) {
Insert(9025, kDeltaFrame, kFirst, kLast);
Insert(9024, kKeyFrame, kFirst, kLast);
packet_buffer_.ClearTo(9025);
EXPECT_THAT(Insert(9057, kDeltaFrame, kFirst, kLast).packets, SizeIs(1));
EXPECT_THAT(Insert(9026, kDeltaFrame, kFirst, kLast).packets, SizeIs(1));
}
TEST_F(PacketBufferTest, SameFrameDifferentTimestamps) {
Insert(0, kKeyFrame, kFirst, kNotLast, {}, 1000);
EXPECT_THAT(Insert(1, kKeyFrame, kNotFirst, kLast, {}, 1001).packets,
IsEmpty());
}
TEST_F(PacketBufferTest, ContinuousSeqNumDoubleMarkerBit) {
Insert(2, kKeyFrame, kNotFirst, kNotLast);
Insert(1, kKeyFrame, kFirst, kLast);
EXPECT_THAT(Insert(3, kKeyFrame, kNotFirst, kLast).packets, IsEmpty());
}
TEST_F(PacketBufferTest, IncomingCodecChange) {
auto packet = std::make_unique<PacketBuffer::Packet>();
packet->video_header.is_first_packet_in_frame = true;
packet->video_header.is_last_packet_in_frame = true;
packet->video_header.codec = kVideoCodecVP8;
packet->video_header.video_type_header.emplace<RTPVideoHeaderVP8>();
packet->timestamp = 1;
packet->sequence_number = 1;
packet->video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
SizeIs(1));
packet = std::make_unique<PacketBuffer::Packet>();
packet->video_header.is_first_packet_in_frame = true;
packet->video_header.is_last_packet_in_frame = true;
packet->video_header.codec = kVideoCodecH264;
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus.resize(1);
packet->timestamp = 3;
packet->sequence_number = 3;
packet->video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
IsEmpty());
packet = std::make_unique<PacketBuffer::Packet>();
packet->video_header.is_first_packet_in_frame = true;
packet->video_header.is_last_packet_in_frame = true;
packet->video_header.codec = kVideoCodecVP8;
packet->video_header.video_type_header.emplace<RTPVideoHeaderVP8>();
packet->timestamp = 2;
packet->sequence_number = 2;
packet->video_header.frame_type = VideoFrameType::kVideoFrameDelta;
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
SizeIs(2));
}
TEST_P(PacketBufferH264ParameterizedTest, OneFrameFillBuffer) {
InsertH264(0, kKeyFrame, kFirst, kNotLast, 1000);
for (int i = 1; i < kStartSize - 1; ++i)
InsertH264(i, kKeyFrame, kNotFirst, kNotLast, 1000);
EXPECT_THAT(InsertH264(kStartSize - 1, kKeyFrame, kNotFirst, kLast, 1000),
StartSeqNumsAre(0));
}
TEST_P(PacketBufferH264ParameterizedTest, CreateFramesAfterFilledBuffer) {
EXPECT_THAT(InsertH264(kStartSize - 2, kKeyFrame, kFirst, kLast, 0).packets,
SizeIs(1));
InsertH264(kStartSize, kDeltaFrame, kFirst, kNotLast, 2000);
for (int i = 1; i < kStartSize; ++i)
InsertH264(kStartSize + i, kDeltaFrame, kNotFirst, kNotLast, 2000);
EXPECT_THAT(
InsertH264(kStartSize + kStartSize, kDeltaFrame, kNotFirst, kLast, 2000)
.packets,
IsEmpty());
EXPECT_THAT(InsertH264(kStartSize - 1, kKeyFrame, kFirst, kLast, 1000),
StartSeqNumsAre(kStartSize - 1, kStartSize));
}
TEST_P(PacketBufferH264ParameterizedTest, OneFrameMaxSeqNum) {
InsertH264(65534, kKeyFrame, kFirst, kNotLast, 1000);
EXPECT_THAT(InsertH264(65535, kKeyFrame, kNotFirst, kLast, 1000),
StartSeqNumsAre(65534));
}
TEST_P(PacketBufferH264ParameterizedTest, InsertTooOldPackets) {
InsertH264(4660, kKeyFrame, kFirst, kNotLast, 1000);
InsertH264(37429, kDeltaFrame, kFirst, kNotLast, 1000);
InsertH264(4662, kKeyFrame, kFirst, kLast, 1000);
}
TEST_P(PacketBufferH264ParameterizedTest, ClearMissingPacketsOnKeyframe) {
InsertH264(0, kKeyFrame, kFirst, kLast, 1000);
InsertH264(2, kKeyFrame, kFirst, kLast, 3000);
InsertH264(3, kDeltaFrame, kFirst, kNotLast, 4000);
InsertH264(4, kDeltaFrame, kNotFirst, kLast, 4000);
EXPECT_THAT(InsertH264(kStartSize + 1, kKeyFrame, kFirst, kLast, 18000),
StartSeqNumsAre(kStartSize + 1));
}
TEST_P(PacketBufferH264ParameterizedTest, FindFramesOnPadding) {
EXPECT_THAT(InsertH264(0, kKeyFrame, kFirst, kLast, 1000),
StartSeqNumsAre(0));
EXPECT_THAT(InsertH264(2, kDeltaFrame, kFirst, kLast, 1000).packets,
IsEmpty());
EXPECT_THAT(packet_buffer_.InsertPadding(1), StartSeqNumsAre(2));
}
TEST_P(PacketBufferH264ParameterizedTest, FindFramesOnReorderedPadding) {
EXPECT_THAT(InsertH264(0, kKeyFrame, kFirst, kLast, 1001),
StartSeqNumsAre(0));
EXPECT_THAT(InsertH264(1, kDeltaFrame, kFirst, kNotLast, 1002).packets,
IsEmpty());
EXPECT_THAT(packet_buffer_.InsertPadding(3).packets, IsEmpty());
EXPECT_THAT(InsertH264(4, kDeltaFrame, kFirst, kLast, 1003).packets,
IsEmpty());
EXPECT_THAT(InsertH264(2, kDeltaFrame, kNotFirst, kLast, 1002),
StartSeqNumsAre(1, 4));
}
class PacketBufferH264XIsKeyframeTest : public PacketBufferH264Test {
protected:
const int64_t kSeqNum = 5;
explicit PacketBufferH264XIsKeyframeTest(bool sps_pps_idr_is_keyframe)
: PacketBufferH264Test(sps_pps_idr_is_keyframe) {}
std::unique_ptr<PacketBuffer::Packet> CreatePacket() {
auto packet = std::make_unique<PacketBuffer::Packet>();
packet->video_header.codec = kVideoCodecH264;
packet->sequence_number = kSeqNum;
packet->video_header.is_first_packet_in_frame = true;
packet->video_header.is_last_packet_in_frame = true;
return packet;
}
};
class PacketBufferH264IdrIsKeyframeTest
: public PacketBufferH264XIsKeyframeTest {
protected:
PacketBufferH264IdrIsKeyframeTest()
: PacketBufferH264XIsKeyframeTest(false) {}
};
TEST_F(PacketBufferH264IdrIsKeyframeTest, IdrIsKeyframe) {
auto packet = CreatePacket();
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus = {{H264::NaluType::kIdr}};
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
ElementsAre(KeyFrame()));
}
TEST_F(PacketBufferH264IdrIsKeyframeTest, SpsPpsIdrIsKeyframe) {
auto packet = CreatePacket();
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus = {
{H264::NaluType::kSps}, {H264::NaluType::kPps}, {H264::NaluType::kIdr}};
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
ElementsAre(KeyFrame()));
}
class PacketBufferH264SpsPpsIdrIsKeyframeTest
: public PacketBufferH264XIsKeyframeTest {
protected:
PacketBufferH264SpsPpsIdrIsKeyframeTest()
: PacketBufferH264XIsKeyframeTest(true) {}
};
TEST_F(PacketBufferH264SpsPpsIdrIsKeyframeTest, IdrIsNotKeyframe) {
auto packet = CreatePacket();
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus = {{H264::NaluType::kIdr}};
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
ElementsAre(DeltaFrame()));
}
TEST_F(PacketBufferH264SpsPpsIdrIsKeyframeTest, SpsPpsIsNotKeyframe) {
auto packet = CreatePacket();
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus = {{H264::NaluType::kSps}, {H264::NaluType::kPps}};
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
ElementsAre(DeltaFrame()));
}
TEST_F(PacketBufferH264SpsPpsIdrIsKeyframeTest, SpsPpsIdrIsKeyframe) {
auto packet = CreatePacket();
auto& h264_header =
packet->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus = {
{H264::NaluType::kSps}, {H264::NaluType::kPps}, {H264::NaluType::kIdr}};
EXPECT_THAT(packet_buffer_.InsertPacket(std::move(packet)).packets,
ElementsAre(KeyFrame()));
}
class PacketBufferH264FrameGap : public PacketBufferH264Test {
protected:
PacketBufferH264FrameGap() : PacketBufferH264Test(true) {}
};
TEST_F(PacketBufferH264FrameGap, AllowFrameGapForH264WithGeneric) {
auto generic = true;
InsertH264(1, kKeyFrame, kFirst, kLast, 1001, {}, 0, 0, generic);
EXPECT_THAT(InsertH264(3, kDeltaFrame, kFirst, kLast, 1003, {}, 0, 0, generic)
.packets,
SizeIs(1));
}
TEST_F(PacketBufferH264FrameGap, DisallowFrameGapForH264NoGeneric) {
auto generic = false;
InsertH264(1, kKeyFrame, kFirst, kLast, 1001, {}, 0, 0, generic);
EXPECT_THAT(InsertH264(3, kDeltaFrame, kFirst, kLast, 1003, {}, 0, 0, generic)
.packets,
IsEmpty());
}
TEST_F(PacketBufferH264FrameGap,
AllowFrameGapForH264WithGenericOnFirstPacketOnly) {
bool generic = true;
InsertH264(1, kKeyFrame, kFirst, kLast, 1001, {}, 0, 0, generic);
InsertH264(3, kDeltaFrame, kFirst, kNotLast, 1003, {}, 0, 0, generic);
// Second packet is not generic, but we can still output frame with 2 packets.
EXPECT_THAT(
InsertH264(4, kDeltaFrame, kNotFirst, kLast, 1003, {}, 0, 0, !generic)
.packets,
SizeIs(2));
}
TEST_F(PacketBufferH264FrameGap, DoesntCrashWhenTryToClearBefore1stPacket) {
// Test scenario copied from the https://issues.chromium.org/370689424
InsertH264(41087, kKeyFrame, kNotFirst, kNotLast, 123, 0, 0, false);
packet_buffer_.ClearTo(30896);
InsertH264(32896, kKeyFrame, kFirst, kLast, 123, 0, 0, false);
}
} // namespace
} // namespace video_coding
} // namespace webrtc