webrtc_m130/webrtc/base/signalthread_unittest.cc
kwiberg 4485ffb58d #include "webrtc/base/constructormagic.h" where appropriate
Any file that uses the RTC_DISALLOW_* macros should #include
"webrtc/base/constructormagic.h", but a shocking number of them don't.
This causes trouble when we try to wean files off of #including
scoped_ptr.h, since a bunch of files get their constructormagic macros
only from there.

Rather than fixing these errors one by one as they turn up, this CL
simply ensures that every file in the WebRTC tree that uses the
RTC_DISALLOW_* macros #includes "webrtc/base/constructormagic.h".

BUG=webrtc:5520

Review URL: https://codereview.webrtc.org/1917043005

Cr-Commit-Position: refs/heads/master@{#12509}
2016-04-26 15:14:48 +00:00

202 lines
5.6 KiB
C++

/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/signalthread.h"
#include "webrtc/base/thread.h"
using namespace rtc;
class SignalThreadTest : public testing::Test, public sigslot::has_slots<> {
public:
class SlowSignalThread : public SignalThread {
public:
SlowSignalThread(SignalThreadTest* harness) : harness_(harness) {
}
virtual ~SlowSignalThread() {
EXPECT_EQ(harness_->main_thread_, Thread::Current());
++harness_->thread_deleted_;
}
const SignalThreadTest* harness() { return harness_; }
protected:
virtual void OnWorkStart() {
ASSERT_TRUE(harness_ != NULL);
++harness_->thread_started_;
EXPECT_EQ(harness_->main_thread_, Thread::Current());
EXPECT_FALSE(worker()->RunningForTest()); // not started yet
}
virtual void OnWorkStop() {
++harness_->thread_stopped_;
EXPECT_EQ(harness_->main_thread_, Thread::Current());
EXPECT_TRUE(worker()->RunningForTest()); // not stopped yet
}
virtual void OnWorkDone() {
++harness_->thread_done_;
EXPECT_EQ(harness_->main_thread_, Thread::Current());
EXPECT_TRUE(worker()->RunningForTest()); // not stopped yet
}
virtual void DoWork() {
EXPECT_NE(harness_->main_thread_, Thread::Current());
EXPECT_EQ(worker(), Thread::Current());
Thread::Current()->socketserver()->Wait(250, false);
}
private:
SignalThreadTest* harness_;
RTC_DISALLOW_COPY_AND_ASSIGN(SlowSignalThread);
};
void OnWorkComplete(rtc::SignalThread* thread) {
SlowSignalThread* t = static_cast<SlowSignalThread*>(thread);
EXPECT_EQ(t->harness(), this);
EXPECT_EQ(main_thread_, Thread::Current());
++thread_completed_;
if (!called_release_) {
thread->Release();
}
}
virtual void SetUp() {
main_thread_ = Thread::Current();
thread_ = new SlowSignalThread(this);
thread_->SignalWorkDone.connect(this, &SignalThreadTest::OnWorkComplete);
called_release_ = false;
thread_started_ = 0;
thread_done_ = 0;
thread_completed_ = 0;
thread_stopped_ = 0;
thread_deleted_ = 0;
}
virtual void TearDown() {
}
Thread* main_thread_;
SlowSignalThread* thread_;
bool called_release_;
int thread_started_;
int thread_done_;
int thread_completed_;
int thread_stopped_;
int thread_deleted_;
};
class OwnerThread : public Thread, public sigslot::has_slots<> {
public:
explicit OwnerThread(SignalThreadTest* harness)
: harness_(harness),
has_run_(false) {
}
virtual ~OwnerThread() {
Stop();
}
virtual void Run() {
SignalThreadTest::SlowSignalThread* signal_thread =
new SignalThreadTest::SlowSignalThread(harness_);
signal_thread->SignalWorkDone.connect(this, &OwnerThread::OnWorkDone);
signal_thread->Start();
Thread::Current()->socketserver()->Wait(100, false);
signal_thread->Release();
// Delete |signal_thread|.
signal_thread->Destroy(true);
has_run_ = true;
}
bool has_run() { return has_run_; }
void OnWorkDone(SignalThread* signal_thread) {
FAIL() << " This shouldn't get called.";
}
private:
SignalThreadTest* harness_;
bool has_run_;
RTC_DISALLOW_COPY_AND_ASSIGN(OwnerThread);
};
// Test for when the main thread goes away while the
// signal thread is still working. This may happen
// when shutting down the process.
TEST_F(SignalThreadTest, OwnerThreadGoesAway) {
{
std::unique_ptr<OwnerThread> owner(new OwnerThread(this));
main_thread_ = owner.get();
owner->Start();
while (!owner->has_run()) {
Thread::Current()->socketserver()->Wait(10, false);
}
}
// At this point the main thread has gone away.
// Give the SignalThread a little time to do its callback,
// which will crash if the signal thread doesn't handle
// this situation well.
Thread::Current()->socketserver()->Wait(500, false);
}
#define EXPECT_STATE(started, done, completed, stopped, deleted) \
EXPECT_EQ(started, thread_started_); \
EXPECT_EQ(done, thread_done_); \
EXPECT_EQ(completed, thread_completed_); \
EXPECT_EQ(stopped, thread_stopped_); \
EXPECT_EQ(deleted, thread_deleted_);
TEST_F(SignalThreadTest, ThreadFinishes) {
thread_->Start();
EXPECT_STATE(1, 0, 0, 0, 0);
Thread::SleepMs(500);
EXPECT_STATE(1, 0, 0, 0, 0);
Thread::Current()->ProcessMessages(0);
EXPECT_STATE(1, 1, 1, 0, 1);
}
TEST_F(SignalThreadTest, ReleasedThreadFinishes) {
thread_->Start();
EXPECT_STATE(1, 0, 0, 0, 0);
thread_->Release();
called_release_ = true;
EXPECT_STATE(1, 0, 0, 0, 0);
Thread::SleepMs(500);
EXPECT_STATE(1, 0, 0, 0, 0);
Thread::Current()->ProcessMessages(0);
EXPECT_STATE(1, 1, 1, 0, 1);
}
TEST_F(SignalThreadTest, DestroyedThreadCleansUp) {
thread_->Start();
EXPECT_STATE(1, 0, 0, 0, 0);
thread_->Destroy(true);
EXPECT_STATE(1, 0, 0, 1, 1);
Thread::Current()->ProcessMessages(0);
EXPECT_STATE(1, 0, 0, 1, 1);
}
TEST_F(SignalThreadTest, DeferredDestroyedThreadCleansUp) {
thread_->Start();
EXPECT_STATE(1, 0, 0, 0, 0);
thread_->Destroy(false);
EXPECT_STATE(1, 0, 0, 1, 0);
Thread::SleepMs(500);
EXPECT_STATE(1, 0, 0, 1, 0);
Thread::Current()->ProcessMessages(0);
EXPECT_STATE(1, 1, 0, 1, 1);
}