webrtc_m130/audio/channel_receive.cc
Jakob Ivarsson‎ a08189b948 Revert "Add InsertPacket method that takes RtpPacketInfo."
This reverts commit 38ddea5ee3320bf3441aeb3654e099b3695c9789.

Reason for revert: not backwards compatible

Original change's description:
> Add InsertPacket method that takes RtpPacketInfo.
>
> The version which only passes receive_time will be removed (once migrated).
> Keeping the version that only passes header and payload for convenience.
>
> This will allow us to attach more metadata on the worker thread before InsertPacket, instead of on the playout thread after GetAudio. Eventually, the plan is to split the RTP handling on the worker thread into a separate class.
>
> Bug: webrtc:42223109
> Change-Id: I5399b53b9fc5c2f1c996e109054b1b0877ecca05
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/369000
> Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
> Commit-Queue: Jakob Ivarsson‎ <jakobi@webrtc.org>
> Cr-Commit-Position: refs/heads/main@{#43445}

Bug: webrtc:42223109
Change-Id: Ie7cf397cfbe5dedca009f16e5e9e3af40adbe99b
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/369200
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Commit-Queue: Jakob Ivarsson‎ <jakobi@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#43450}
2024-11-25 15:25:10 +00:00

1222 lines
47 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "audio/channel_receive.h"
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "api/audio/audio_device.h"
#include "api/crypto/frame_decryptor_interface.h"
#include "api/frame_transformer_interface.h"
#include "api/neteq/default_neteq_factory.h"
#include "api/neteq/neteq.h"
#include "api/rtc_event_log/rtc_event_log.h"
#include "api/sequence_checker.h"
#include "api/task_queue/pending_task_safety_flag.h"
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "audio/audio_level.h"
#include "audio/channel_receive_frame_transformer_delegate.h"
#include "audio/channel_send.h"
#include "audio/utility/audio_frame_operations.h"
#include "logging/rtc_event_log/events/rtc_event_audio_playout.h"
#include "logging/rtc_event_log/events/rtc_event_neteq_set_minimum_delay.h"
#include "modules/audio_coding/acm2/acm_resampler.h"
#include "modules/audio_coding/acm2/call_statistics.h"
#include "modules/audio_coding/audio_network_adaptor/include/audio_network_adaptor_config.h"
#include "modules/pacing/packet_router.h"
#include "modules/rtp_rtcp/include/receive_statistics.h"
#include "modules/rtp_rtcp/include/remote_ntp_time_estimator.h"
#include "modules/rtp_rtcp/source/absolute_capture_time_interpolator.h"
#include "modules/rtp_rtcp/source/capture_clock_offset_updater.h"
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
#include "modules/rtp_rtcp/source/rtp_rtcp_config.h"
#include "modules/rtp_rtcp/source/rtp_rtcp_impl2.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "rtc_base/numerics/sequence_number_unwrapper.h"
#include "rtc_base/race_checker.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/system/no_unique_address.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/metrics.h"
#include "system_wrappers/include/ntp_time.h"
namespace webrtc {
namespace voe {
namespace {
constexpr double kAudioSampleDurationSeconds = 0.01;
// Video Sync.
constexpr int kVoiceEngineMinMinPlayoutDelayMs = 0;
constexpr int kVoiceEngineMaxMinPlayoutDelayMs = 10000;
std::unique_ptr<NetEq> CreateNetEq(
NetEqFactory* neteq_factory,
std::optional<AudioCodecPairId> codec_pair_id,
size_t jitter_buffer_max_packets,
bool jitter_buffer_fast_playout,
int jitter_buffer_min_delay_ms,
const Environment& env,
scoped_refptr<AudioDecoderFactory> decoder_factory) {
NetEq::Config config;
config.codec_pair_id = codec_pair_id;
config.max_packets_in_buffer = jitter_buffer_max_packets;
config.enable_fast_accelerate = jitter_buffer_fast_playout;
config.enable_muted_state = true;
config.min_delay_ms = jitter_buffer_min_delay_ms;
if (neteq_factory) {
return neteq_factory->Create(env, config, std::move(decoder_factory));
}
return DefaultNetEqFactory().Create(env, config, std::move(decoder_factory));
}
class ChannelReceive : public ChannelReceiveInterface,
public RtcpPacketTypeCounterObserver {
public:
// Used for receive streams.
ChannelReceive(
const Environment& env,
NetEqFactory* neteq_factory,
AudioDeviceModule* audio_device_module,
Transport* rtcp_send_transport,
uint32_t local_ssrc,
uint32_t remote_ssrc,
size_t jitter_buffer_max_packets,
bool jitter_buffer_fast_playout,
int jitter_buffer_min_delay_ms,
bool enable_non_sender_rtt,
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory,
std::optional<AudioCodecPairId> codec_pair_id,
rtc::scoped_refptr<FrameDecryptorInterface> frame_decryptor,
const webrtc::CryptoOptions& crypto_options,
rtc::scoped_refptr<FrameTransformerInterface> frame_transformer);
~ChannelReceive() override;
void SetSink(AudioSinkInterface* sink) override;
void SetReceiveCodecs(const std::map<int, SdpAudioFormat>& codecs) override;
// API methods
void StartPlayout() override;
void StopPlayout() override;
// Codecs
std::optional<std::pair<int, SdpAudioFormat>> GetReceiveCodec()
const override;
void ReceivedRTCPPacket(const uint8_t* data, size_t length) override;
// RtpPacketSinkInterface.
void OnRtpPacket(const RtpPacketReceived& packet) override;
// Muting, Volume and Level.
void SetChannelOutputVolumeScaling(float scaling) override;
int GetSpeechOutputLevelFullRange() const override;
// See description of "totalAudioEnergy" in the WebRTC stats spec:
// https://w3c.github.io/webrtc-stats/#dom-rtcmediastreamtrackstats-totalaudioenergy
double GetTotalOutputEnergy() const override;
double GetTotalOutputDuration() const override;
// Stats.
NetworkStatistics GetNetworkStatistics(
bool get_and_clear_legacy_stats) const override;
AudioDecodingCallStats GetDecodingCallStatistics() const override;
// Audio+Video Sync.
uint32_t GetDelayEstimate() const override;
bool SetMinimumPlayoutDelay(int delayMs) override;
bool GetPlayoutRtpTimestamp(uint32_t* rtp_timestamp,
int64_t* time_ms) const override;
void SetEstimatedPlayoutNtpTimestampMs(int64_t ntp_timestamp_ms,
int64_t time_ms) override;
std::optional<int64_t> GetCurrentEstimatedPlayoutNtpTimestampMs(
int64_t now_ms) const override;
// Audio quality.
bool SetBaseMinimumPlayoutDelayMs(int delay_ms) override;
int GetBaseMinimumPlayoutDelayMs() const override;
// Produces the transport-related timestamps; current_delay_ms is left unset.
std::optional<Syncable::Info> GetSyncInfo() const override;
void RegisterReceiverCongestionControlObjects(
PacketRouter* packet_router) override;
void ResetReceiverCongestionControlObjects() override;
CallReceiveStatistics GetRTCPStatistics() const override;
void SetNACKStatus(bool enable, int maxNumberOfPackets) override;
void SetRtcpMode(webrtc::RtcpMode mode) override;
void SetNonSenderRttMeasurement(bool enabled) override;
AudioMixer::Source::AudioFrameInfo GetAudioFrameWithInfo(
int sample_rate_hz,
AudioFrame* audio_frame) override;
int PreferredSampleRate() const override;
std::vector<RtpSource> GetSources() const override;
// Associate to a send channel.
// Used for obtaining RTT for a receive-only channel.
void SetAssociatedSendChannel(const ChannelSendInterface* channel) override;
// Sets a frame transformer between the depacketizer and the decoder, to
// transform the received frames before decoding them.
void SetDepacketizerToDecoderFrameTransformer(
rtc::scoped_refptr<webrtc::FrameTransformerInterface> frame_transformer)
override;
void SetFrameDecryptor(rtc::scoped_refptr<webrtc::FrameDecryptorInterface>
frame_decryptor) override;
void OnLocalSsrcChange(uint32_t local_ssrc) override;
uint32_t GetLocalSsrc() const override;
void RtcpPacketTypesCounterUpdated(
uint32_t ssrc,
const RtcpPacketTypeCounter& packet_counter) override;
private:
void ReceivePacket(const uint8_t* packet,
size_t packet_length,
const RTPHeader& header,
Timestamp receive_time) RTC_RUN_ON(worker_thread_checker_);
int ResendPackets(const uint16_t* sequence_numbers, int length);
void UpdatePlayoutTimestamp(bool rtcp, int64_t now_ms)
RTC_RUN_ON(worker_thread_checker_);
int GetRtpTimestampRateHz() const;
void OnReceivedPayloadData(rtc::ArrayView<const uint8_t> payload,
const RTPHeader& rtpHeader,
Timestamp receive_time)
RTC_RUN_ON(worker_thread_checker_);
void InitFrameTransformerDelegate(
rtc::scoped_refptr<webrtc::FrameTransformerInterface> frame_transformer)
RTC_RUN_ON(worker_thread_checker_);
// Thread checkers document and lock usage of some methods to specific threads
// we know about. The goal is to eventually split up voe::ChannelReceive into
// parts with single-threaded semantics, and thereby reduce the need for
// locks.
RTC_NO_UNIQUE_ADDRESS SequenceChecker worker_thread_checker_;
RTC_NO_UNIQUE_ADDRESS SequenceChecker network_thread_checker_;
const Environment env_;
TaskQueueBase* const worker_thread_;
ScopedTaskSafety worker_safety_;
// Methods accessed from audio and video threads are checked for sequential-
// only access. We don't necessarily own and control these threads, so thread
// checkers cannot be used. E.g. Chromium may transfer "ownership" from one
// audio thread to another, but access is still sequential.
rtc::RaceChecker audio_thread_race_checker_;
Mutex callback_mutex_;
Mutex volume_settings_mutex_;
mutable Mutex call_stats_mutex_;
bool playing_ RTC_GUARDED_BY(worker_thread_checker_) = false;
// Indexed by payload type.
std::map<uint8_t, int> payload_type_frequencies_;
std::unique_ptr<ReceiveStatistics> rtp_receive_statistics_;
std::unique_ptr<ModuleRtpRtcpImpl2> rtp_rtcp_;
const uint32_t remote_ssrc_;
SourceTracker source_tracker_ RTC_GUARDED_BY(&worker_thread_checker_);
// Info for GetSyncInfo is updated on network or worker thread, and queried on
// the worker thread.
std::optional<uint32_t> last_received_rtp_timestamp_
RTC_GUARDED_BY(&worker_thread_checker_);
std::optional<int64_t> last_received_rtp_system_time_ms_
RTC_GUARDED_BY(&worker_thread_checker_);
const std::unique_ptr<NetEq> neteq_; // NetEq is thread-safe; no lock needed.
acm2::ResamplerHelper resampler_helper_
RTC_GUARDED_BY(audio_thread_race_checker_);
acm2::CallStatistics call_stats_ RTC_GUARDED_BY(call_stats_mutex_);
AudioSinkInterface* audio_sink_ = nullptr;
AudioLevel _outputAudioLevel;
RemoteNtpTimeEstimator ntp_estimator_ RTC_GUARDED_BY(ts_stats_lock_);
// Timestamp of the audio pulled from NetEq.
std::optional<uint32_t> jitter_buffer_playout_timestamp_;
uint32_t playout_timestamp_rtp_ RTC_GUARDED_BY(worker_thread_checker_);
std::optional<int64_t> playout_timestamp_rtp_time_ms_
RTC_GUARDED_BY(worker_thread_checker_);
uint32_t playout_delay_ms_ RTC_GUARDED_BY(worker_thread_checker_);
std::optional<int64_t> playout_timestamp_ntp_
RTC_GUARDED_BY(worker_thread_checker_);
std::optional<int64_t> playout_timestamp_ntp_time_ms_
RTC_GUARDED_BY(worker_thread_checker_);
mutable Mutex ts_stats_lock_;
webrtc::RtpTimestampUnwrapper rtp_ts_wraparound_handler_;
// The rtp timestamp of the first played out audio frame.
int64_t capture_start_rtp_time_stamp_;
// The capture ntp time (in local timebase) of the first played out audio
// frame.
int64_t capture_start_ntp_time_ms_ RTC_GUARDED_BY(ts_stats_lock_);
AudioDeviceModule* _audioDeviceModulePtr;
float _outputGain RTC_GUARDED_BY(volume_settings_mutex_);
const ChannelSendInterface* associated_send_channel_
RTC_GUARDED_BY(network_thread_checker_);
PacketRouter* packet_router_ = nullptr;
SequenceChecker construction_thread_;
// E2EE Audio Frame Decryption
rtc::scoped_refptr<FrameDecryptorInterface> frame_decryptor_
RTC_GUARDED_BY(worker_thread_checker_);
webrtc::CryptoOptions crypto_options_;
webrtc::AbsoluteCaptureTimeInterpolator absolute_capture_time_interpolator_
RTC_GUARDED_BY(worker_thread_checker_);
webrtc::CaptureClockOffsetUpdater capture_clock_offset_updater_
RTC_GUARDED_BY(ts_stats_lock_);
rtc::scoped_refptr<ChannelReceiveFrameTransformerDelegate>
frame_transformer_delegate_;
// Counter that's used to control the frequency of reporting histograms
// from the `GetAudioFrameWithInfo` callback.
int audio_frame_interval_count_ RTC_GUARDED_BY(audio_thread_race_checker_) =
0;
// Controls how many callbacks we let pass by before reporting callback stats.
// A value of 100 means 100 callbacks, each one of which represents 10ms worth
// of data, so the stats reporting frequency will be 1Hz (modulo failures).
constexpr static int kHistogramReportingInterval = 100;
mutable Mutex rtcp_counter_mutex_;
RtcpPacketTypeCounter rtcp_packet_type_counter_
RTC_GUARDED_BY(rtcp_counter_mutex_);
std::map<int, SdpAudioFormat> payload_type_map_;
};
void ChannelReceive::OnReceivedPayloadData(
rtc::ArrayView<const uint8_t> payload,
const RTPHeader& rtpHeader,
Timestamp receive_time) {
if (!playing_) {
// Avoid inserting into NetEQ when we are not playing. Count the
// packet as discarded.
// Tell source_tracker_ that the frame has been "delivered". Normally, this
// happens in AudioReceiveStreamInterface when audio frames are pulled out,
// but when playout is muted, nothing is pulling frames. The downside of
// this approach is that frames delivered this way won't be delayed for
// playout, and therefore will be unsynchronized with (a) audio delay when
// playing and (b) any audio/video synchronization. But the alternative is
// that muting playout also stops the SourceTracker from updating RtpSource
// information.
RtpPacketInfos::vector_type packet_vector = {
RtpPacketInfo(rtpHeader, receive_time)};
source_tracker_.OnFrameDelivered(RtpPacketInfos(packet_vector),
env_.clock().CurrentTime());
return;
}
// Push the incoming payload (parsed and ready for decoding) into NetEq.
if (payload.empty()) {
neteq_->InsertEmptyPacket(rtpHeader);
} else if (neteq_->InsertPacket(rtpHeader, payload, receive_time) < 0) {
RTC_DLOG(LS_ERROR) << "ChannelReceive::OnReceivedPayloadData() unable to "
"insert packet into NetEq; PT = "
<< static_cast<int>(rtpHeader.payloadType);
return;
}
TimeDelta round_trip_time = rtp_rtcp_->LastRtt().value_or(TimeDelta::Zero());
std::vector<uint16_t> nack_list = neteq_->GetNackList(round_trip_time.ms());
if (!nack_list.empty()) {
// Can't use nack_list.data() since it's not supported by all
// compilers.
ResendPackets(&(nack_list[0]), static_cast<int>(nack_list.size()));
}
}
void ChannelReceive::InitFrameTransformerDelegate(
rtc::scoped_refptr<webrtc::FrameTransformerInterface> frame_transformer) {
RTC_DCHECK(frame_transformer);
RTC_DCHECK(!frame_transformer_delegate_);
RTC_DCHECK(worker_thread_->IsCurrent());
// Pass a callback to ChannelReceive::OnReceivedPayloadData, to be called by
// the delegate to receive transformed audio.
ChannelReceiveFrameTransformerDelegate::ReceiveFrameCallback
receive_audio_callback = [this](rtc::ArrayView<const uint8_t> packet,
const RTPHeader& header,
Timestamp receive_time) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
OnReceivedPayloadData(packet, header, receive_time);
};
frame_transformer_delegate_ =
rtc::make_ref_counted<ChannelReceiveFrameTransformerDelegate>(
std::move(receive_audio_callback), std::move(frame_transformer),
worker_thread_);
frame_transformer_delegate_->Init();
}
AudioMixer::Source::AudioFrameInfo ChannelReceive::GetAudioFrameWithInfo(
int sample_rate_hz,
AudioFrame* audio_frame) {
TRACE_EVENT_BEGIN1("webrtc", "ChannelReceive::GetAudioFrameWithInfo",
"sample_rate_hz", sample_rate_hz);
RTC_DCHECK_RUNS_SERIALIZED(&audio_thread_race_checker_);
audio_frame->sample_rate_hz_ = sample_rate_hz;
env_.event_log().Log(std::make_unique<RtcEventAudioPlayout>(remote_ssrc_));
if ((neteq_->GetAudio(audio_frame) != NetEq::kOK) ||
!resampler_helper_.MaybeResample(sample_rate_hz, audio_frame)) {
RTC_DLOG(LS_ERROR)
<< "ChannelReceive::GetAudioFrame() PlayoutData10Ms() failed!";
// In all likelihood, the audio in this frame is garbage. We return an
// error so that the audio mixer module doesn't add it to the mix. As
// a result, it won't be played out and the actions skipped here are
// irrelevant.
TRACE_EVENT_END1("webrtc", "ChannelReceive::GetAudioFrameWithInfo", "error",
1);
return AudioMixer::Source::AudioFrameInfo::kError;
}
{
MutexLock lock(&call_stats_mutex_);
call_stats_.DecodedByNetEq(audio_frame->speech_type_, audio_frame->muted());
}
{
// Pass the audio buffers to an optional sink callback, before applying
// scaling/panning, as that applies to the mix operation.
// External recipients of the audio (e.g. via AudioTrack), will do their
// own mixing/dynamic processing.
MutexLock lock(&callback_mutex_);
if (audio_sink_) {
AudioSinkInterface::Data data(
audio_frame->data(), audio_frame->samples_per_channel_,
audio_frame->sample_rate_hz_, audio_frame->num_channels_,
audio_frame->timestamp_);
audio_sink_->OnData(data);
}
}
float output_gain = 1.0f;
{
MutexLock lock(&volume_settings_mutex_);
output_gain = _outputGain;
}
// Output volume scaling
if (output_gain < 0.99f || output_gain > 1.01f) {
// TODO(solenberg): Combine with mute state - this can cause clicks!
AudioFrameOperations::ScaleWithSat(output_gain, audio_frame);
}
// Measure audio level (0-9)
// TODO(henrik.lundin) Use the `muted` information here too.
// TODO(deadbeef): Use RmsLevel for `_outputAudioLevel` (see
// https://crbug.com/webrtc/7517).
_outputAudioLevel.ComputeLevel(*audio_frame, kAudioSampleDurationSeconds);
if (capture_start_rtp_time_stamp_ < 0 && audio_frame->timestamp_ != 0) {
// The first frame with a valid rtp timestamp.
capture_start_rtp_time_stamp_ = audio_frame->timestamp_;
}
if (capture_start_rtp_time_stamp_ >= 0) {
// audio_frame.timestamp_ should be valid from now on.
// Compute elapsed time.
int64_t unwrap_timestamp =
rtp_ts_wraparound_handler_.Unwrap(audio_frame->timestamp_);
audio_frame->elapsed_time_ms_ =
(unwrap_timestamp - capture_start_rtp_time_stamp_) /
(GetRtpTimestampRateHz() / 1000);
{
MutexLock lock(&ts_stats_lock_);
// Compute ntp time.
audio_frame->ntp_time_ms_ =
ntp_estimator_.Estimate(audio_frame->timestamp_);
// `ntp_time_ms_` won't be valid until at least 2 RTCP SRs are received.
if (audio_frame->ntp_time_ms_ > 0) {
// Compute `capture_start_ntp_time_ms_` so that
// `capture_start_ntp_time_ms_` + `elapsed_time_ms_` == `ntp_time_ms_`
capture_start_ntp_time_ms_ =
audio_frame->ntp_time_ms_ - audio_frame->elapsed_time_ms_;
}
}
}
// Fill in local capture clock offset in `audio_frame->packet_infos_`.
RtpPacketInfos::vector_type packet_infos;
for (auto& packet_info : audio_frame->packet_infos_) {
RtpPacketInfo new_packet_info(packet_info);
if (packet_info.absolute_capture_time().has_value()) {
MutexLock lock(&ts_stats_lock_);
new_packet_info.set_local_capture_clock_offset(
capture_clock_offset_updater_.ConvertsToTimeDela(
capture_clock_offset_updater_.AdjustEstimatedCaptureClockOffset(
packet_info.absolute_capture_time()
->estimated_capture_clock_offset)));
}
packet_infos.push_back(std::move(new_packet_info));
}
audio_frame->packet_infos_ = RtpPacketInfos(std::move(packet_infos));
if (!audio_frame->packet_infos_.empty()) {
RtpPacketInfos infos_copy = audio_frame->packet_infos_;
Timestamp delivery_time = env_.clock().CurrentTime();
worker_thread_->PostTask(
SafeTask(worker_safety_.flag(), [this, infos_copy, delivery_time]() {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
source_tracker_.OnFrameDelivered(infos_copy, delivery_time);
}));
}
++audio_frame_interval_count_;
if (audio_frame_interval_count_ >= kHistogramReportingInterval) {
audio_frame_interval_count_ = 0;
worker_thread_->PostTask(SafeTask(worker_safety_.flag(), [this]() {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
RTC_HISTOGRAM_COUNTS_1000("WebRTC.Audio.TargetJitterBufferDelayMs",
neteq_->TargetDelayMs());
const int jitter_buffer_delay = neteq_->FilteredCurrentDelayMs();
RTC_HISTOGRAM_COUNTS_1000("WebRTC.Audio.ReceiverDelayEstimateMs",
jitter_buffer_delay + playout_delay_ms_);
RTC_HISTOGRAM_COUNTS_1000("WebRTC.Audio.ReceiverJitterBufferDelayMs",
jitter_buffer_delay);
RTC_HISTOGRAM_COUNTS_1000("WebRTC.Audio.ReceiverDeviceDelayMs",
playout_delay_ms_);
}));
}
TRACE_EVENT_END2("webrtc", "ChannelReceive::GetAudioFrameWithInfo", "gain",
output_gain, "muted", audio_frame->muted());
return audio_frame->muted() ? AudioMixer::Source::AudioFrameInfo::kMuted
: AudioMixer::Source::AudioFrameInfo::kNormal;
}
int ChannelReceive::PreferredSampleRate() const {
RTC_DCHECK_RUNS_SERIALIZED(&audio_thread_race_checker_);
const std::optional<NetEq::DecoderFormat> decoder =
neteq_->GetCurrentDecoderFormat();
const int last_packet_sample_rate_hz = decoder ? decoder->sample_rate_hz : 0;
// Return the bigger of playout and receive frequency in the ACM.
return std::max(last_packet_sample_rate_hz,
neteq_->last_output_sample_rate_hz());
}
ChannelReceive::ChannelReceive(
const Environment& env,
NetEqFactory* neteq_factory,
AudioDeviceModule* audio_device_module,
Transport* rtcp_send_transport,
uint32_t local_ssrc,
uint32_t remote_ssrc,
size_t jitter_buffer_max_packets,
bool jitter_buffer_fast_playout,
int jitter_buffer_min_delay_ms,
bool enable_non_sender_rtt,
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory,
std::optional<AudioCodecPairId> codec_pair_id,
rtc::scoped_refptr<FrameDecryptorInterface> frame_decryptor,
const webrtc::CryptoOptions& crypto_options,
rtc::scoped_refptr<FrameTransformerInterface> frame_transformer)
: env_(env),
worker_thread_(TaskQueueBase::Current()),
rtp_receive_statistics_(ReceiveStatistics::Create(&env_.clock())),
remote_ssrc_(remote_ssrc),
source_tracker_(&env_.clock()),
neteq_(CreateNetEq(neteq_factory,
codec_pair_id,
jitter_buffer_max_packets,
jitter_buffer_fast_playout,
jitter_buffer_min_delay_ms,
env_,
decoder_factory)),
_outputAudioLevel(),
ntp_estimator_(&env_.clock()),
playout_timestamp_rtp_(0),
playout_delay_ms_(0),
capture_start_rtp_time_stamp_(-1),
capture_start_ntp_time_ms_(-1),
_audioDeviceModulePtr(audio_device_module),
_outputGain(1.0f),
associated_send_channel_(nullptr),
frame_decryptor_(frame_decryptor),
crypto_options_(crypto_options),
absolute_capture_time_interpolator_(&env_.clock()) {
RTC_DCHECK(audio_device_module);
network_thread_checker_.Detach();
rtp_receive_statistics_->EnableRetransmitDetection(remote_ssrc_, true);
RtpRtcpInterface::Configuration configuration;
configuration.audio = true;
configuration.receiver_only = true;
configuration.outgoing_transport = rtcp_send_transport;
configuration.receive_statistics = rtp_receive_statistics_.get();
configuration.local_media_ssrc = local_ssrc;
configuration.rtcp_packet_type_counter_observer = this;
configuration.non_sender_rtt_measurement = enable_non_sender_rtt;
if (frame_transformer)
InitFrameTransformerDelegate(std::move(frame_transformer));
rtp_rtcp_ = std::make_unique<ModuleRtpRtcpImpl2>(env_, configuration);
rtp_rtcp_->SetRemoteSSRC(remote_ssrc_);
// Ensure that RTCP is enabled for the created channel.
rtp_rtcp_->SetRTCPStatus(RtcpMode::kCompound);
}
ChannelReceive::~ChannelReceive() {
RTC_DCHECK_RUN_ON(&construction_thread_);
// Resets the delegate's callback to ChannelReceive::OnReceivedPayloadData.
if (frame_transformer_delegate_)
frame_transformer_delegate_->Reset();
StopPlayout();
}
void ChannelReceive::SetSink(AudioSinkInterface* sink) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
MutexLock lock(&callback_mutex_);
audio_sink_ = sink;
}
void ChannelReceive::StartPlayout() {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
playing_ = true;
}
void ChannelReceive::StopPlayout() {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
playing_ = false;
_outputAudioLevel.ResetLevelFullRange();
neteq_->FlushBuffers();
}
std::optional<std::pair<int, SdpAudioFormat>> ChannelReceive::GetReceiveCodec()
const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
std::optional<NetEq::DecoderFormat> decoder =
neteq_->GetCurrentDecoderFormat();
if (!decoder) {
return std::nullopt;
}
return std::make_pair(decoder->payload_type, decoder->sdp_format);
}
void ChannelReceive::SetReceiveCodecs(
const std::map<int, SdpAudioFormat>& codecs) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
for (const auto& kv : codecs) {
RTC_DCHECK_GE(kv.second.clockrate_hz, 1000);
payload_type_frequencies_[kv.first] = kv.second.clockrate_hz;
}
payload_type_map_ = codecs;
neteq_->SetCodecs(codecs);
}
void ChannelReceive::OnRtpPacket(const RtpPacketReceived& packet) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
// TODO(bugs.webrtc.org/11993): Expect to be called exclusively on the
// network thread. Once that's done, the same applies to
// UpdatePlayoutTimestamp and
int64_t now_ms = rtc::TimeMillis();
last_received_rtp_timestamp_ = packet.Timestamp();
last_received_rtp_system_time_ms_ = now_ms;
// Store playout timestamp for the received RTP packet
UpdatePlayoutTimestamp(false, now_ms);
const auto& it = payload_type_frequencies_.find(packet.PayloadType());
if (it == payload_type_frequencies_.end())
return;
// TODO(bugs.webrtc.org/7135): Set payload_type_frequency earlier, when packet
// is parsed.
RtpPacketReceived packet_copy(packet);
packet_copy.set_payload_type_frequency(it->second);
rtp_receive_statistics_->OnRtpPacket(packet_copy);
RTPHeader header;
packet_copy.GetHeader(&header);
// Interpolates absolute capture timestamp RTP header extension.
header.extension.absolute_capture_time =
absolute_capture_time_interpolator_.OnReceivePacket(
AbsoluteCaptureTimeInterpolator::GetSource(header.ssrc,
header.arrOfCSRCs),
header.timestamp,
rtc::saturated_cast<uint32_t>(packet_copy.payload_type_frequency()),
header.extension.absolute_capture_time);
ReceivePacket(packet_copy.data(), packet_copy.size(), header,
packet.arrival_time());
}
void ChannelReceive::ReceivePacket(const uint8_t* packet,
size_t packet_length,
const RTPHeader& header,
Timestamp receive_time) {
const uint8_t* payload = packet + header.headerLength;
RTC_DCHECK_GE(packet_length, header.headerLength);
size_t payload_length = packet_length - header.headerLength;
size_t payload_data_length = payload_length - header.paddingLength;
// E2EE Custom Audio Frame Decryption (This is optional).
// Keep this buffer around for the lifetime of the OnReceivedPayloadData call.
rtc::Buffer decrypted_audio_payload;
if (frame_decryptor_ != nullptr) {
const size_t max_plaintext_size = frame_decryptor_->GetMaxPlaintextByteSize(
cricket::MEDIA_TYPE_AUDIO, payload_length);
decrypted_audio_payload.SetSize(max_plaintext_size);
const std::vector<uint32_t> csrcs(header.arrOfCSRCs,
header.arrOfCSRCs + header.numCSRCs);
const FrameDecryptorInterface::Result decrypt_result =
frame_decryptor_->Decrypt(
cricket::MEDIA_TYPE_AUDIO, csrcs,
/*additional_data=*/
nullptr,
rtc::ArrayView<const uint8_t>(payload, payload_data_length),
decrypted_audio_payload);
if (decrypt_result.IsOk()) {
decrypted_audio_payload.SetSize(decrypt_result.bytes_written);
} else {
// Interpret failures as a silent frame.
decrypted_audio_payload.SetSize(0);
}
payload = decrypted_audio_payload.data();
payload_data_length = decrypted_audio_payload.size();
} else if (crypto_options_.sframe.require_frame_encryption) {
RTC_DLOG(LS_ERROR)
<< "FrameDecryptor required but not set, dropping packet";
payload_data_length = 0;
}
rtc::ArrayView<const uint8_t> payload_data(payload, payload_data_length);
if (frame_transformer_delegate_) {
// Asynchronously transform the received payload. After the payload is
// transformed, the delegate will call OnReceivedPayloadData to handle it.
char buf[1024];
rtc::SimpleStringBuilder mime_type(buf);
auto it = payload_type_map_.find(header.payloadType);
mime_type << MediaTypeToString(cricket::MEDIA_TYPE_AUDIO) << "/"
<< (it != payload_type_map_.end() ? it->second.name
: "x-unknown");
frame_transformer_delegate_->Transform(payload_data, header, remote_ssrc_,
mime_type.str(), receive_time);
} else {
OnReceivedPayloadData(payload_data, header, receive_time);
}
}
void ChannelReceive::ReceivedRTCPPacket(const uint8_t* data, size_t length) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
// TODO(bugs.webrtc.org/11993): Expect to be called exclusively on the
// network thread.
// Store playout timestamp for the received RTCP packet
UpdatePlayoutTimestamp(true, rtc::TimeMillis());
// Deliver RTCP packet to RTP/RTCP module for parsing
rtp_rtcp_->IncomingRtcpPacket(rtc::MakeArrayView(data, length));
std::optional<TimeDelta> rtt = rtp_rtcp_->LastRtt();
if (!rtt.has_value()) {
// Waiting for valid RTT.
return;
}
std::optional<RtpRtcpInterface::SenderReportStats> last_sr =
rtp_rtcp_->GetSenderReportStats();
if (!last_sr.has_value()) {
// Waiting for RTCP.
return;
}
{
MutexLock lock(&ts_stats_lock_);
ntp_estimator_.UpdateRtcpTimestamp(*rtt, last_sr->last_remote_ntp_timestamp,
last_sr->last_remote_rtp_timestamp);
std::optional<int64_t> remote_to_local_clock_offset =
ntp_estimator_.EstimateRemoteToLocalClockOffset();
if (remote_to_local_clock_offset.has_value()) {
capture_clock_offset_updater_.SetRemoteToLocalClockOffset(
*remote_to_local_clock_offset);
}
}
}
int ChannelReceive::GetSpeechOutputLevelFullRange() const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
return _outputAudioLevel.LevelFullRange();
}
double ChannelReceive::GetTotalOutputEnergy() const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
return _outputAudioLevel.TotalEnergy();
}
double ChannelReceive::GetTotalOutputDuration() const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
return _outputAudioLevel.TotalDuration();
}
void ChannelReceive::SetChannelOutputVolumeScaling(float scaling) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
MutexLock lock(&volume_settings_mutex_);
_outputGain = scaling;
}
void ChannelReceive::RegisterReceiverCongestionControlObjects(
PacketRouter* packet_router) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
RTC_DCHECK(packet_router);
RTC_DCHECK(!packet_router_);
constexpr bool remb_candidate = false;
packet_router->AddReceiveRtpModule(rtp_rtcp_.get(), remb_candidate);
packet_router_ = packet_router;
}
void ChannelReceive::ResetReceiverCongestionControlObjects() {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
RTC_DCHECK(packet_router_);
packet_router_->RemoveReceiveRtpModule(rtp_rtcp_.get());
packet_router_ = nullptr;
}
CallReceiveStatistics ChannelReceive::GetRTCPStatistics() const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
CallReceiveStatistics stats;
// The jitter statistics is updated for each received RTP packet and is based
// on received packets.
RtpReceiveStats rtp_stats;
StreamStatistician* statistician =
rtp_receive_statistics_->GetStatistician(remote_ssrc_);
if (statistician) {
rtp_stats = statistician->GetStats();
}
stats.packets_lost = rtp_stats.packets_lost;
stats.jitter_ms = rtp_stats.interarrival_jitter.ms();
// Data counters.
if (statistician) {
stats.payload_bytes_received = rtp_stats.packet_counter.payload_bytes;
stats.header_and_padding_bytes_received =
rtp_stats.packet_counter.header_bytes +
rtp_stats.packet_counter.padding_bytes;
stats.packets_received = rtp_stats.packet_counter.packets;
stats.last_packet_received = rtp_stats.last_packet_received;
}
{
MutexLock lock(&rtcp_counter_mutex_);
stats.nacks_sent = rtcp_packet_type_counter_.nack_packets;
}
// Timestamps.
{
MutexLock lock(&ts_stats_lock_);
stats.capture_start_ntp_time_ms = capture_start_ntp_time_ms_;
}
std::optional<RtpRtcpInterface::SenderReportStats> rtcp_sr_stats =
rtp_rtcp_->GetSenderReportStats();
if (rtcp_sr_stats.has_value()) {
stats.last_sender_report_timestamp = rtcp_sr_stats->last_arrival_timestamp;
stats.last_sender_report_utc_timestamp =
Clock::NtpToUtc(rtcp_sr_stats->last_arrival_ntp_timestamp);
stats.last_sender_report_remote_utc_timestamp =
Clock::NtpToUtc(rtcp_sr_stats->last_remote_ntp_timestamp);
stats.sender_reports_packets_sent = rtcp_sr_stats->packets_sent;
stats.sender_reports_bytes_sent = rtcp_sr_stats->bytes_sent;
stats.sender_reports_reports_count = rtcp_sr_stats->reports_count;
}
std::optional<RtpRtcpInterface::NonSenderRttStats> non_sender_rtt_stats =
rtp_rtcp_->GetNonSenderRttStats();
if (non_sender_rtt_stats.has_value()) {
stats.round_trip_time = non_sender_rtt_stats->round_trip_time;
stats.round_trip_time_measurements =
non_sender_rtt_stats->round_trip_time_measurements;
stats.total_round_trip_time = non_sender_rtt_stats->total_round_trip_time;
}
return stats;
}
void ChannelReceive::SetNACKStatus(bool enable, int max_packets) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
// None of these functions can fail.
if (enable) {
rtp_receive_statistics_->SetMaxReorderingThreshold(remote_ssrc_,
max_packets);
neteq_->EnableNack(max_packets);
} else {
rtp_receive_statistics_->SetMaxReorderingThreshold(
remote_ssrc_, kDefaultMaxReorderingThreshold);
neteq_->DisableNack();
}
}
void ChannelReceive::SetRtcpMode(webrtc::RtcpMode mode) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
rtp_rtcp_->SetRTCPStatus(mode);
}
void ChannelReceive::SetNonSenderRttMeasurement(bool enabled) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
rtp_rtcp_->SetNonSenderRttMeasurement(enabled);
}
// Called when we are missing one or more packets.
int ChannelReceive::ResendPackets(const uint16_t* sequence_numbers,
int length) {
return rtp_rtcp_->SendNACK(sequence_numbers, length);
}
void ChannelReceive::RtcpPacketTypesCounterUpdated(
uint32_t ssrc,
const RtcpPacketTypeCounter& packet_counter) {
if (ssrc != remote_ssrc_) {
return;
}
MutexLock lock(&rtcp_counter_mutex_);
rtcp_packet_type_counter_ = packet_counter;
}
void ChannelReceive::SetAssociatedSendChannel(
const ChannelSendInterface* channel) {
RTC_DCHECK_RUN_ON(&network_thread_checker_);
associated_send_channel_ = channel;
}
void ChannelReceive::SetDepacketizerToDecoderFrameTransformer(
rtc::scoped_refptr<webrtc::FrameTransformerInterface> frame_transformer) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
if (!frame_transformer) {
RTC_DCHECK_NOTREACHED() << "Not setting the transformer?";
return;
}
if (frame_transformer_delegate_) {
// Depending on when the channel is created, the transformer might be set
// twice. Don't replace the delegate if it was already initialized.
// TODO(crbug.com/webrtc/15674): Prevent multiple calls during
// reconfiguration.
RTC_CHECK_EQ(frame_transformer_delegate_->FrameTransformer(),
frame_transformer);
return;
}
InitFrameTransformerDelegate(std::move(frame_transformer));
}
void ChannelReceive::SetFrameDecryptor(
rtc::scoped_refptr<webrtc::FrameDecryptorInterface> frame_decryptor) {
// TODO(bugs.webrtc.org/11993): Expect to be called on the network thread.
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
frame_decryptor_ = std::move(frame_decryptor);
}
void ChannelReceive::OnLocalSsrcChange(uint32_t local_ssrc) {
// TODO(bugs.webrtc.org/11993): Expect to be called on the network thread.
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
rtp_rtcp_->SetLocalSsrc(local_ssrc);
}
uint32_t ChannelReceive::GetLocalSsrc() const {
// TODO(bugs.webrtc.org/11993): Expect to be called on the network thread.
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
return rtp_rtcp_->local_media_ssrc();
}
NetworkStatistics ChannelReceive::GetNetworkStatistics(
bool get_and_clear_legacy_stats) const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
NetworkStatistics acm_stat;
NetEqNetworkStatistics neteq_stat;
if (get_and_clear_legacy_stats) {
// NetEq function always returns zero, so we don't check the return value.
neteq_->NetworkStatistics(&neteq_stat);
acm_stat.currentExpandRate = neteq_stat.expand_rate;
acm_stat.currentSpeechExpandRate = neteq_stat.speech_expand_rate;
acm_stat.currentPreemptiveRate = neteq_stat.preemptive_rate;
acm_stat.currentAccelerateRate = neteq_stat.accelerate_rate;
acm_stat.currentSecondaryDecodedRate = neteq_stat.secondary_decoded_rate;
acm_stat.currentSecondaryDiscardedRate =
neteq_stat.secondary_discarded_rate;
acm_stat.meanWaitingTimeMs = neteq_stat.mean_waiting_time_ms;
acm_stat.maxWaitingTimeMs = neteq_stat.max_waiting_time_ms;
} else {
neteq_stat = neteq_->CurrentNetworkStatistics();
acm_stat.currentExpandRate = 0;
acm_stat.currentSpeechExpandRate = 0;
acm_stat.currentPreemptiveRate = 0;
acm_stat.currentAccelerateRate = 0;
acm_stat.currentSecondaryDecodedRate = 0;
acm_stat.currentSecondaryDiscardedRate = 0;
acm_stat.meanWaitingTimeMs = -1;
acm_stat.maxWaitingTimeMs = 1;
}
acm_stat.currentBufferSize = neteq_stat.current_buffer_size_ms;
acm_stat.preferredBufferSize = neteq_stat.preferred_buffer_size_ms;
acm_stat.jitterPeaksFound = neteq_stat.jitter_peaks_found ? true : false;
NetEqLifetimeStatistics neteq_lifetime_stat = neteq_->GetLifetimeStatistics();
acm_stat.totalSamplesReceived = neteq_lifetime_stat.total_samples_received;
acm_stat.concealedSamples = neteq_lifetime_stat.concealed_samples;
acm_stat.silentConcealedSamples =
neteq_lifetime_stat.silent_concealed_samples;
acm_stat.concealmentEvents = neteq_lifetime_stat.concealment_events;
acm_stat.jitterBufferDelayMs = neteq_lifetime_stat.jitter_buffer_delay_ms;
acm_stat.jitterBufferTargetDelayMs =
neteq_lifetime_stat.jitter_buffer_target_delay_ms;
acm_stat.jitterBufferMinimumDelayMs =
neteq_lifetime_stat.jitter_buffer_minimum_delay_ms;
acm_stat.jitterBufferEmittedCount =
neteq_lifetime_stat.jitter_buffer_emitted_count;
acm_stat.delayedPacketOutageSamples =
neteq_lifetime_stat.delayed_packet_outage_samples;
acm_stat.relativePacketArrivalDelayMs =
neteq_lifetime_stat.relative_packet_arrival_delay_ms;
acm_stat.interruptionCount = neteq_lifetime_stat.interruption_count;
acm_stat.totalInterruptionDurationMs =
neteq_lifetime_stat.total_interruption_duration_ms;
acm_stat.insertedSamplesForDeceleration =
neteq_lifetime_stat.inserted_samples_for_deceleration;
acm_stat.removedSamplesForAcceleration =
neteq_lifetime_stat.removed_samples_for_acceleration;
acm_stat.fecPacketsReceived = neteq_lifetime_stat.fec_packets_received;
acm_stat.fecPacketsDiscarded = neteq_lifetime_stat.fec_packets_discarded;
acm_stat.totalProcessingDelayUs =
neteq_lifetime_stat.total_processing_delay_us;
acm_stat.packetsDiscarded = neteq_lifetime_stat.packets_discarded;
NetEqOperationsAndState neteq_operations_and_state =
neteq_->GetOperationsAndState();
acm_stat.packetBufferFlushes =
neteq_operations_and_state.packet_buffer_flushes;
return acm_stat;
}
AudioDecodingCallStats ChannelReceive::GetDecodingCallStatistics() const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
MutexLock lock(&call_stats_mutex_);
return call_stats_.GetDecodingStatistics();
}
uint32_t ChannelReceive::GetDelayEstimate() const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
// Return the current jitter buffer delay + playout delay.
return neteq_->FilteredCurrentDelayMs() + playout_delay_ms_;
}
bool ChannelReceive::SetMinimumPlayoutDelay(int delay_ms) {
// TODO(bugs.webrtc.org/11993): This should run on the network thread.
// We get here via RtpStreamsSynchronizer. Once that's done, many (all?) of
// these locks aren't needed.
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
// Limit to range accepted by both VoE and ACM, so we're at least getting as
// close as possible, instead of failing.
delay_ms = rtc::SafeClamp(delay_ms, kVoiceEngineMinMinPlayoutDelayMs,
kVoiceEngineMaxMinPlayoutDelayMs);
if (!neteq_->SetMinimumDelay(delay_ms)) {
RTC_DLOG(LS_ERROR)
<< "SetMinimumPlayoutDelay() failed to set min playout delay "
<< delay_ms;
return false;
}
return true;
}
bool ChannelReceive::GetPlayoutRtpTimestamp(uint32_t* rtp_timestamp,
int64_t* time_ms) const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
if (!playout_timestamp_rtp_time_ms_)
return false;
*rtp_timestamp = playout_timestamp_rtp_;
*time_ms = playout_timestamp_rtp_time_ms_.value();
return true;
}
void ChannelReceive::SetEstimatedPlayoutNtpTimestampMs(int64_t ntp_timestamp_ms,
int64_t time_ms) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
playout_timestamp_ntp_ = ntp_timestamp_ms;
playout_timestamp_ntp_time_ms_ = time_ms;
}
std::optional<int64_t> ChannelReceive::GetCurrentEstimatedPlayoutNtpTimestampMs(
int64_t now_ms) const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
if (!playout_timestamp_ntp_ || !playout_timestamp_ntp_time_ms_)
return std::nullopt;
int64_t elapsed_ms = now_ms - *playout_timestamp_ntp_time_ms_;
return *playout_timestamp_ntp_ + elapsed_ms;
}
bool ChannelReceive::SetBaseMinimumPlayoutDelayMs(int delay_ms) {
env_.event_log().Log(
std::make_unique<RtcEventNetEqSetMinimumDelay>(remote_ssrc_, delay_ms));
return neteq_->SetBaseMinimumDelayMs(delay_ms);
}
int ChannelReceive::GetBaseMinimumPlayoutDelayMs() const {
return neteq_->GetBaseMinimumDelayMs();
}
std::optional<Syncable::Info> ChannelReceive::GetSyncInfo() const {
// TODO(bugs.webrtc.org/11993): This should run on the network thread.
// We get here via RtpStreamsSynchronizer. Once that's done, many of
// these locks aren't needed.
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
Syncable::Info info;
std::optional<RtpRtcpInterface::SenderReportStats> last_sr =
rtp_rtcp_->GetSenderReportStats();
if (!last_sr.has_value()) {
return std::nullopt;
}
info.capture_time_ntp_secs = last_sr->last_remote_ntp_timestamp.seconds();
info.capture_time_ntp_frac = last_sr->last_remote_ntp_timestamp.fractions();
info.capture_time_source_clock = last_sr->last_remote_rtp_timestamp;
if (!last_received_rtp_timestamp_ || !last_received_rtp_system_time_ms_) {
return std::nullopt;
}
info.latest_received_capture_timestamp = *last_received_rtp_timestamp_;
info.latest_receive_time_ms = *last_received_rtp_system_time_ms_;
int jitter_buffer_delay = neteq_->FilteredCurrentDelayMs();
info.current_delay_ms = jitter_buffer_delay + playout_delay_ms_;
return info;
}
void ChannelReceive::UpdatePlayoutTimestamp(bool rtcp, int64_t now_ms) {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
// TODO(bugs.webrtc.org/11993): Expect to be called exclusively on the
// network thread. Once that's done, we won't need video_sync_lock_.
jitter_buffer_playout_timestamp_ = neteq_->GetPlayoutTimestamp();
if (!jitter_buffer_playout_timestamp_) {
// This can happen if this channel has not received any RTP packets. In
// this case, NetEq is not capable of computing a playout timestamp.
return;
}
uint16_t delay_ms = 0;
if (_audioDeviceModulePtr->PlayoutDelay(&delay_ms) == -1) {
RTC_DLOG(LS_WARNING)
<< "ChannelReceive::UpdatePlayoutTimestamp() failed to read"
" playout delay from the ADM";
return;
}
RTC_DCHECK(jitter_buffer_playout_timestamp_);
uint32_t playout_timestamp = *jitter_buffer_playout_timestamp_;
// Remove the playout delay.
playout_timestamp -= (delay_ms * (GetRtpTimestampRateHz() / 1000));
if (!rtcp && playout_timestamp != playout_timestamp_rtp_) {
playout_timestamp_rtp_ = playout_timestamp;
playout_timestamp_rtp_time_ms_ = now_ms;
}
playout_delay_ms_ = delay_ms;
}
int ChannelReceive::GetRtpTimestampRateHz() const {
const auto decoder_format = neteq_->GetCurrentDecoderFormat();
// Default to the playout frequency if we've not gotten any packets yet.
// TODO(ossu): Zero clockrate can only happen if we've added an external
// decoder for a format we don't support internally. Remove once that way of
// adding decoders is gone!
// TODO(kwiberg): `decoder_format->sdp_format.clockrate_hz` is an RTP
// clockrate as it should, but `neteq_->last_output_sample_rate_hz()` is a
// codec sample rate, which is not always the same thing.
return (decoder_format && decoder_format->sdp_format.clockrate_hz != 0)
? decoder_format->sdp_format.clockrate_hz
: neteq_->last_output_sample_rate_hz();
}
std::vector<RtpSource> ChannelReceive::GetSources() const {
RTC_DCHECK_RUN_ON(&worker_thread_checker_);
return source_tracker_.GetSources();
}
} // namespace
std::unique_ptr<ChannelReceiveInterface> CreateChannelReceive(
const Environment& env,
NetEqFactory* neteq_factory,
AudioDeviceModule* audio_device_module,
Transport* rtcp_send_transport,
uint32_t local_ssrc,
uint32_t remote_ssrc,
size_t jitter_buffer_max_packets,
bool jitter_buffer_fast_playout,
int jitter_buffer_min_delay_ms,
bool enable_non_sender_rtt,
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory,
std::optional<AudioCodecPairId> codec_pair_id,
rtc::scoped_refptr<FrameDecryptorInterface> frame_decryptor,
const webrtc::CryptoOptions& crypto_options,
rtc::scoped_refptr<FrameTransformerInterface> frame_transformer) {
return std::make_unique<ChannelReceive>(
env, neteq_factory, audio_device_module, rtcp_send_transport, local_ssrc,
remote_ssrc, jitter_buffer_max_packets, jitter_buffer_fast_playout,
jitter_buffer_min_delay_ms, enable_non_sender_rtt, decoder_factory,
codec_pair_id, std::move(frame_decryptor), crypto_options,
std::move(frame_transformer));
}
} // namespace voe
} // namespace webrtc