This adds a (default off) flag which makes retransmissions be processed immediately, just like audio packets normally are. This might increase send rates and thus losses in some cases, but will also reduce retranmission delays especially when timer slack or bursting is used. Usefuleness TBD via experiment. Bug: chromium:1354491 Change-Id: Icaa83125bfb30826ce72e6e786963d411e05ea57 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/272483 Commit-Queue: Erik Språng <sprang@webrtc.org> Reviewed-by: Henrik Boström <hbos@webrtc.org> Cr-Commit-Position: refs/heads/main@{#37926}
687 lines
24 KiB
C++
687 lines
24 KiB
C++
/*
|
|
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/pacing/pacing_controller.h"
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "absl/strings/match.h"
|
|
#include "modules/pacing/bitrate_prober.h"
|
|
#include "modules/pacing/interval_budget.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/experiments/field_trial_parser.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
// Time limit in milliseconds between packet bursts.
|
|
constexpr TimeDelta kDefaultMinPacketLimit = TimeDelta::Millis(5);
|
|
constexpr TimeDelta kCongestedPacketInterval = TimeDelta::Millis(500);
|
|
// TODO(sprang): Consider dropping this limit.
|
|
// The maximum debt level, in terms of time, capped when sending packets.
|
|
constexpr TimeDelta kMaxDebtInTime = TimeDelta::Millis(500);
|
|
constexpr TimeDelta kMaxElapsedTime = TimeDelta::Seconds(2);
|
|
constexpr TimeDelta kTargetPaddingDuration = TimeDelta::Millis(5);
|
|
|
|
bool IsDisabled(const FieldTrialsView& field_trials, absl::string_view key) {
|
|
return absl::StartsWith(field_trials.Lookup(key), "Disabled");
|
|
}
|
|
|
|
bool IsEnabled(const FieldTrialsView& field_trials, absl::string_view key) {
|
|
return absl::StartsWith(field_trials.Lookup(key), "Enabled");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
const TimeDelta PacingController::kMaxExpectedQueueLength =
|
|
TimeDelta::Millis(2000);
|
|
const float PacingController::kDefaultPaceMultiplier = 2.5f;
|
|
const TimeDelta PacingController::kPausedProcessInterval =
|
|
kCongestedPacketInterval;
|
|
const TimeDelta PacingController::kMinSleepTime = TimeDelta::Millis(1);
|
|
const TimeDelta PacingController::kMaxEarlyProbeProcessing =
|
|
TimeDelta::Millis(1);
|
|
|
|
PacingController::PacingController(Clock* clock,
|
|
PacketSender* packet_sender,
|
|
const FieldTrialsView& field_trials)
|
|
: clock_(clock),
|
|
packet_sender_(packet_sender),
|
|
field_trials_(field_trials),
|
|
drain_large_queues_(
|
|
!IsDisabled(field_trials_, "WebRTC-Pacer-DrainQueue")),
|
|
send_padding_if_silent_(
|
|
IsEnabled(field_trials_, "WebRTC-Pacer-PadInSilence")),
|
|
pace_audio_(IsEnabled(field_trials_, "WebRTC-Pacer-BlockAudio")),
|
|
ignore_transport_overhead_(
|
|
IsEnabled(field_trials_, "WebRTC-Pacer-IgnoreTransportOverhead")),
|
|
fast_retransmissions_(
|
|
IsEnabled(field_trials_, "WebRTC-Pacer-FastRetransmissions")),
|
|
min_packet_limit_(kDefaultMinPacketLimit),
|
|
transport_overhead_per_packet_(DataSize::Zero()),
|
|
send_burst_interval_(TimeDelta::Zero()),
|
|
last_timestamp_(clock_->CurrentTime()),
|
|
paused_(false),
|
|
media_debt_(DataSize::Zero()),
|
|
padding_debt_(DataSize::Zero()),
|
|
pacing_rate_(DataRate::Zero()),
|
|
adjusted_media_rate_(DataRate::Zero()),
|
|
padding_rate_(DataRate::Zero()),
|
|
prober_(field_trials_),
|
|
probing_send_failure_(false),
|
|
last_process_time_(clock->CurrentTime()),
|
|
last_send_time_(last_process_time_),
|
|
seen_first_packet_(false),
|
|
packet_queue_(/*creation_time=*/last_process_time_),
|
|
congested_(false),
|
|
queue_time_limit_(kMaxExpectedQueueLength),
|
|
account_for_audio_(false),
|
|
include_overhead_(false) {
|
|
if (!drain_large_queues_) {
|
|
RTC_LOG(LS_WARNING) << "Pacer queues will not be drained,"
|
|
"pushback experiment must be enabled.";
|
|
}
|
|
FieldTrialParameter<int> min_packet_limit_ms("", min_packet_limit_.ms());
|
|
ParseFieldTrial({&min_packet_limit_ms},
|
|
field_trials_.Lookup("WebRTC-Pacer-MinPacketLimitMs"));
|
|
min_packet_limit_ = TimeDelta::Millis(min_packet_limit_ms.Get());
|
|
UpdateBudgetWithElapsedTime(min_packet_limit_);
|
|
}
|
|
|
|
PacingController::~PacingController() = default;
|
|
|
|
void PacingController::CreateProbeCluster(DataRate bitrate, int cluster_id) {
|
|
prober_.CreateProbeCluster({.at_time = CurrentTime(),
|
|
.target_data_rate = bitrate,
|
|
.target_duration = TimeDelta::Millis(15),
|
|
.target_probe_count = 5,
|
|
.id = cluster_id});
|
|
}
|
|
|
|
void PacingController::CreateProbeClusters(
|
|
rtc::ArrayView<const ProbeClusterConfig> probe_cluster_configs) {
|
|
for (const ProbeClusterConfig probe_cluster_config : probe_cluster_configs) {
|
|
prober_.CreateProbeCluster(probe_cluster_config);
|
|
}
|
|
}
|
|
|
|
void PacingController::Pause() {
|
|
if (!paused_)
|
|
RTC_LOG(LS_INFO) << "PacedSender paused.";
|
|
paused_ = true;
|
|
packet_queue_.SetPauseState(true, CurrentTime());
|
|
}
|
|
|
|
void PacingController::Resume() {
|
|
if (paused_)
|
|
RTC_LOG(LS_INFO) << "PacedSender resumed.";
|
|
paused_ = false;
|
|
packet_queue_.SetPauseState(false, CurrentTime());
|
|
}
|
|
|
|
bool PacingController::IsPaused() const {
|
|
return paused_;
|
|
}
|
|
|
|
void PacingController::SetCongested(bool congested) {
|
|
if (congested_ && !congested) {
|
|
UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(CurrentTime()));
|
|
}
|
|
congested_ = congested;
|
|
}
|
|
|
|
bool PacingController::IsProbing() const {
|
|
return prober_.is_probing();
|
|
}
|
|
|
|
Timestamp PacingController::CurrentTime() const {
|
|
Timestamp time = clock_->CurrentTime();
|
|
if (time < last_timestamp_) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Non-monotonic clock behavior observed. Previous timestamp: "
|
|
<< last_timestamp_.ms() << ", new timestamp: " << time.ms();
|
|
RTC_DCHECK_GE(time, last_timestamp_);
|
|
time = last_timestamp_;
|
|
}
|
|
last_timestamp_ = time;
|
|
return time;
|
|
}
|
|
|
|
void PacingController::SetProbingEnabled(bool enabled) {
|
|
RTC_CHECK(!seen_first_packet_);
|
|
prober_.SetEnabled(enabled);
|
|
}
|
|
|
|
void PacingController::SetPacingRates(DataRate pacing_rate,
|
|
DataRate padding_rate) {
|
|
static constexpr DataRate kMaxRate = DataRate::KilobitsPerSec(100'000);
|
|
RTC_CHECK_GT(pacing_rate, DataRate::Zero());
|
|
RTC_CHECK_GE(padding_rate, DataRate::Zero());
|
|
if (padding_rate > pacing_rate) {
|
|
RTC_LOG(LS_WARNING) << "Padding rate " << padding_rate.kbps()
|
|
<< "kbps is higher than the pacing rate "
|
|
<< pacing_rate.kbps() << "kbps, capping.";
|
|
padding_rate = pacing_rate;
|
|
}
|
|
|
|
if (pacing_rate > kMaxRate || padding_rate > kMaxRate) {
|
|
RTC_LOG(LS_WARNING) << "Very high pacing rates ( > " << kMaxRate.kbps()
|
|
<< " kbps) configured: pacing = " << pacing_rate.kbps()
|
|
<< " kbps, padding = " << padding_rate.kbps()
|
|
<< " kbps.";
|
|
}
|
|
pacing_rate_ = pacing_rate;
|
|
padding_rate_ = padding_rate;
|
|
MaybeUpdateMediaRateDueToLongQueue(CurrentTime());
|
|
|
|
RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps=" << pacing_rate_.kbps()
|
|
<< " padding_budget_kbps=" << padding_rate.kbps();
|
|
}
|
|
|
|
void PacingController::EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet) {
|
|
RTC_DCHECK(pacing_rate_ > DataRate::Zero())
|
|
<< "SetPacingRate must be called before InsertPacket.";
|
|
RTC_CHECK(packet->packet_type());
|
|
|
|
prober_.OnIncomingPacket(DataSize::Bytes(packet->payload_size()));
|
|
|
|
const Timestamp now = CurrentTime();
|
|
if (packet_queue_.Empty()) {
|
|
// If queue is empty, we need to "fast-forward" the last process time,
|
|
// so that we don't use passed time as budget for sending the first new
|
|
// packet.
|
|
Timestamp target_process_time = now;
|
|
Timestamp next_send_time = NextSendTime();
|
|
if (next_send_time.IsFinite()) {
|
|
// There was already a valid planned send time, such as a keep-alive.
|
|
// Use that as last process time only if it's prior to now.
|
|
target_process_time = std::min(now, next_send_time);
|
|
}
|
|
UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(target_process_time));
|
|
}
|
|
packet_queue_.Push(now, std::move(packet));
|
|
seen_first_packet_ = true;
|
|
|
|
// Queue length has increased, check if we need to change the pacing rate.
|
|
MaybeUpdateMediaRateDueToLongQueue(now);
|
|
}
|
|
|
|
void PacingController::SetAccountForAudioPackets(bool account_for_audio) {
|
|
account_for_audio_ = account_for_audio;
|
|
}
|
|
|
|
void PacingController::SetIncludeOverhead() {
|
|
include_overhead_ = true;
|
|
}
|
|
|
|
void PacingController::SetTransportOverhead(DataSize overhead_per_packet) {
|
|
if (ignore_transport_overhead_)
|
|
return;
|
|
transport_overhead_per_packet_ = overhead_per_packet;
|
|
}
|
|
|
|
void PacingController::SetSendBurstInterval(TimeDelta burst_interval) {
|
|
send_burst_interval_ = burst_interval;
|
|
}
|
|
|
|
TimeDelta PacingController::ExpectedQueueTime() const {
|
|
RTC_DCHECK_GT(adjusted_media_rate_, DataRate::Zero());
|
|
return QueueSizeData() / adjusted_media_rate_;
|
|
}
|
|
|
|
size_t PacingController::QueueSizePackets() const {
|
|
return rtc::checked_cast<size_t>(packet_queue_.SizeInPackets());
|
|
}
|
|
|
|
const std::array<int, kNumMediaTypes>&
|
|
PacingController::SizeInPacketsPerRtpPacketMediaType() const {
|
|
return packet_queue_.SizeInPacketsPerRtpPacketMediaType();
|
|
}
|
|
|
|
DataSize PacingController::QueueSizeData() const {
|
|
DataSize size = packet_queue_.SizeInPayloadBytes();
|
|
if (include_overhead_) {
|
|
size += static_cast<int64_t>(packet_queue_.SizeInPackets()) *
|
|
transport_overhead_per_packet_;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
DataSize PacingController::CurrentBufferLevel() const {
|
|
return std::max(media_debt_, padding_debt_);
|
|
}
|
|
|
|
absl::optional<Timestamp> PacingController::FirstSentPacketTime() const {
|
|
return first_sent_packet_time_;
|
|
}
|
|
|
|
Timestamp PacingController::OldestPacketEnqueueTime() const {
|
|
return packet_queue_.OldestEnqueueTime();
|
|
}
|
|
|
|
TimeDelta PacingController::UpdateTimeAndGetElapsed(Timestamp now) {
|
|
// If no previous processing, or last process was "in the future" because of
|
|
// early probe processing, then there is no elapsed time to add budget for.
|
|
if (last_process_time_.IsMinusInfinity() || now < last_process_time_) {
|
|
return TimeDelta::Zero();
|
|
}
|
|
TimeDelta elapsed_time = now - last_process_time_;
|
|
last_process_time_ = now;
|
|
if (elapsed_time > kMaxElapsedTime) {
|
|
RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time.ms()
|
|
<< " ms) longer than expected, limiting to "
|
|
<< kMaxElapsedTime.ms();
|
|
elapsed_time = kMaxElapsedTime;
|
|
}
|
|
return elapsed_time;
|
|
}
|
|
|
|
bool PacingController::ShouldSendKeepalive(Timestamp now) const {
|
|
if (send_padding_if_silent_ || paused_ || congested_ || !seen_first_packet_) {
|
|
// We send a padding packet every 500 ms to ensure we won't get stuck in
|
|
// congested state due to no feedback being received.
|
|
if (now - last_send_time_ >= kCongestedPacketInterval) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Timestamp PacingController::NextSendTime() const {
|
|
const Timestamp now = CurrentTime();
|
|
Timestamp next_send_time = Timestamp::PlusInfinity();
|
|
|
|
if (paused_) {
|
|
return last_send_time_ + kPausedProcessInterval;
|
|
}
|
|
|
|
// If probing is active, that always takes priority.
|
|
if (prober_.is_probing() && !probing_send_failure_) {
|
|
Timestamp probe_time = prober_.NextProbeTime(now);
|
|
if (!probe_time.IsPlusInfinity()) {
|
|
return probe_time.IsMinusInfinity() ? now : probe_time;
|
|
}
|
|
}
|
|
|
|
// If queue contains a packet which should not be paced, its target send time
|
|
// is the time at which it was enqueued.
|
|
Timestamp unpaced_send_time = NextUnpacedSendTime();
|
|
if (unpaced_send_time.IsFinite()) {
|
|
return unpaced_send_time;
|
|
}
|
|
|
|
if (congested_ || !seen_first_packet_) {
|
|
// We need to at least send keep-alive packets with some interval.
|
|
return last_send_time_ + kCongestedPacketInterval;
|
|
}
|
|
|
|
if (adjusted_media_rate_ > DataRate::Zero() && !packet_queue_.Empty()) {
|
|
// If packets are allowed to be sent in a burst, the
|
|
// debt is allowed to grow up to one packet more than what can be sent
|
|
// during 'send_burst_period_'.
|
|
TimeDelta drain_time = media_debt_ / adjusted_media_rate_;
|
|
next_send_time =
|
|
last_process_time_ +
|
|
((send_burst_interval_ > drain_time) ? TimeDelta::Zero() : drain_time);
|
|
} else if (padding_rate_ > DataRate::Zero() && packet_queue_.Empty()) {
|
|
// If we _don't_ have pending packets, check how long until we have
|
|
// bandwidth for padding packets. Both media and padding debts must
|
|
// have been drained to do this.
|
|
RTC_DCHECK_GT(adjusted_media_rate_, DataRate::Zero());
|
|
TimeDelta drain_time = std::max(media_debt_ / adjusted_media_rate_,
|
|
padding_debt_ / padding_rate_);
|
|
|
|
if (drain_time.IsZero() &&
|
|
(!media_debt_.IsZero() || !padding_debt_.IsZero())) {
|
|
// We have a non-zero debt, but drain time is smaller than tick size of
|
|
// TimeDelta, round it up to the smallest possible non-zero delta.
|
|
drain_time = TimeDelta::Micros(1);
|
|
}
|
|
next_send_time = last_process_time_ + drain_time;
|
|
} else {
|
|
// Nothing to do.
|
|
next_send_time = last_process_time_ + kPausedProcessInterval;
|
|
}
|
|
|
|
if (send_padding_if_silent_) {
|
|
next_send_time =
|
|
std::min(next_send_time, last_send_time_ + kPausedProcessInterval);
|
|
}
|
|
|
|
return next_send_time;
|
|
}
|
|
|
|
void PacingController::ProcessPackets() {
|
|
const Timestamp now = CurrentTime();
|
|
Timestamp target_send_time = now;
|
|
|
|
if (ShouldSendKeepalive(now)) {
|
|
DataSize keepalive_data_sent = DataSize::Zero();
|
|
// We can not send padding unless a normal packet has first been sent. If
|
|
// we do, timestamps get messed up.
|
|
if (seen_first_packet_) {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets =
|
|
packet_sender_->GeneratePadding(DataSize::Bytes(1));
|
|
for (auto& packet : keepalive_packets) {
|
|
keepalive_data_sent +=
|
|
DataSize::Bytes(packet->payload_size() + packet->padding_size());
|
|
packet_sender_->SendPacket(std::move(packet), PacedPacketInfo());
|
|
for (auto& packet : packet_sender_->FetchFec()) {
|
|
EnqueuePacket(std::move(packet));
|
|
}
|
|
}
|
|
}
|
|
OnPacketSent(RtpPacketMediaType::kPadding, keepalive_data_sent, now);
|
|
}
|
|
|
|
if (paused_) {
|
|
return;
|
|
}
|
|
|
|
TimeDelta early_execute_margin =
|
|
prober_.is_probing() ? kMaxEarlyProbeProcessing : TimeDelta::Zero();
|
|
|
|
target_send_time = NextSendTime();
|
|
if (now + early_execute_margin < target_send_time) {
|
|
// We are too early, but if queue is empty still allow draining some debt.
|
|
// Probing is allowed to be sent up to kMinSleepTime early.
|
|
UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(now));
|
|
return;
|
|
}
|
|
|
|
TimeDelta elapsed_time = UpdateTimeAndGetElapsed(target_send_time);
|
|
|
|
if (elapsed_time > TimeDelta::Zero()) {
|
|
UpdateBudgetWithElapsedTime(elapsed_time);
|
|
}
|
|
|
|
PacedPacketInfo pacing_info;
|
|
DataSize recommended_probe_size = DataSize::Zero();
|
|
bool is_probing = prober_.is_probing();
|
|
if (is_probing) {
|
|
// Probe timing is sensitive, and handled explicitly by BitrateProber, so
|
|
// use actual send time rather than target.
|
|
pacing_info = prober_.CurrentCluster(now).value_or(PacedPacketInfo());
|
|
if (pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe) {
|
|
recommended_probe_size = prober_.RecommendedMinProbeSize();
|
|
RTC_DCHECK_GT(recommended_probe_size, DataSize::Zero());
|
|
} else {
|
|
// No valid probe cluster returned, probe might have timed out.
|
|
is_probing = false;
|
|
}
|
|
}
|
|
|
|
DataSize data_sent = DataSize::Zero();
|
|
// Circuit breaker, making sure main loop isn't forever.
|
|
static constexpr int kMaxIterations = 1 << 16;
|
|
int iteration = 0;
|
|
int packets_sent = 0;
|
|
int padding_packets_generated = 0;
|
|
for (; iteration < kMaxIterations; ++iteration) {
|
|
// Fetch packet, so long as queue is not empty or budget is not
|
|
// exhausted.
|
|
std::unique_ptr<RtpPacketToSend> rtp_packet =
|
|
GetPendingPacket(pacing_info, target_send_time, now);
|
|
if (rtp_packet == nullptr) {
|
|
// No packet available to send, check if we should send padding.
|
|
DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent);
|
|
if (padding_to_add > DataSize::Zero()) {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
|
|
packet_sender_->GeneratePadding(padding_to_add);
|
|
if (!padding_packets.empty()) {
|
|
padding_packets_generated += padding_packets.size();
|
|
for (auto& packet : padding_packets) {
|
|
EnqueuePacket(std::move(packet));
|
|
}
|
|
// Continue loop to send the padding that was just added.
|
|
continue;
|
|
} else {
|
|
// Can't generate padding, still update padding budget for next send
|
|
// time.
|
|
UpdatePaddingBudgetWithSentData(padding_to_add);
|
|
}
|
|
}
|
|
// Can't fetch new packet and no padding to send, exit send loop.
|
|
break;
|
|
} else {
|
|
RTC_DCHECK(rtp_packet);
|
|
RTC_DCHECK(rtp_packet->packet_type().has_value());
|
|
const RtpPacketMediaType packet_type = *rtp_packet->packet_type();
|
|
DataSize packet_size = DataSize::Bytes(rtp_packet->payload_size() +
|
|
rtp_packet->padding_size());
|
|
|
|
if (include_overhead_) {
|
|
packet_size += DataSize::Bytes(rtp_packet->headers_size()) +
|
|
transport_overhead_per_packet_;
|
|
}
|
|
|
|
packet_sender_->SendPacket(std::move(rtp_packet), pacing_info);
|
|
for (auto& packet : packet_sender_->FetchFec()) {
|
|
EnqueuePacket(std::move(packet));
|
|
}
|
|
data_sent += packet_size;
|
|
++packets_sent;
|
|
|
|
// Send done, update send time.
|
|
OnPacketSent(packet_type, packet_size, now);
|
|
|
|
if (is_probing) {
|
|
pacing_info.probe_cluster_bytes_sent += packet_size.bytes();
|
|
// If we are currently probing, we need to stop the send loop when we
|
|
// have reached the send target.
|
|
if (data_sent >= recommended_probe_size) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update target send time in case that are more packets that we are late
|
|
// in processing.
|
|
target_send_time = NextSendTime();
|
|
if (target_send_time > now) {
|
|
// Exit loop if not probing.
|
|
if (!is_probing) {
|
|
break;
|
|
}
|
|
target_send_time = now;
|
|
}
|
|
UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(target_send_time));
|
|
}
|
|
}
|
|
|
|
if (iteration >= kMaxIterations) {
|
|
// Circuit break activated. Log warning, adjust send time and return.
|
|
// TODO(sprang): Consider completely clearing state.
|
|
RTC_LOG(LS_ERROR) << "PacingController exceeded max iterations in "
|
|
"send-loop: packets sent = "
|
|
<< packets_sent << ", padding packets generated = "
|
|
<< padding_packets_generated
|
|
<< ", bytes sent = " << data_sent.bytes();
|
|
last_send_time_ = now;
|
|
last_process_time_ = now;
|
|
return;
|
|
}
|
|
|
|
if (is_probing) {
|
|
probing_send_failure_ = data_sent == DataSize::Zero();
|
|
if (!probing_send_failure_) {
|
|
prober_.ProbeSent(CurrentTime(), data_sent);
|
|
}
|
|
}
|
|
|
|
// Queue length has probably decreased, check if pacing rate needs to updated.
|
|
// Poll the time again, since we might have enqueued new fec/padding packets
|
|
// with a later timestamp than `now`.
|
|
MaybeUpdateMediaRateDueToLongQueue(CurrentTime());
|
|
}
|
|
|
|
DataSize PacingController::PaddingToAdd(DataSize recommended_probe_size,
|
|
DataSize data_sent) const {
|
|
if (!packet_queue_.Empty()) {
|
|
// Actual payload available, no need to add padding.
|
|
return DataSize::Zero();
|
|
}
|
|
|
|
if (congested_) {
|
|
// Don't add padding if congested, even if requested for probing.
|
|
return DataSize::Zero();
|
|
}
|
|
|
|
if (!seen_first_packet_) {
|
|
// We can not send padding unless a normal packet has first been sent. If
|
|
// we do, timestamps get messed up.
|
|
return DataSize::Zero();
|
|
}
|
|
|
|
if (!recommended_probe_size.IsZero()) {
|
|
if (recommended_probe_size > data_sent) {
|
|
return recommended_probe_size - data_sent;
|
|
}
|
|
return DataSize::Zero();
|
|
}
|
|
|
|
if (padding_rate_ > DataRate::Zero() && padding_debt_ == DataSize::Zero()) {
|
|
return kTargetPaddingDuration * padding_rate_;
|
|
}
|
|
return DataSize::Zero();
|
|
}
|
|
|
|
std::unique_ptr<RtpPacketToSend> PacingController::GetPendingPacket(
|
|
const PacedPacketInfo& pacing_info,
|
|
Timestamp target_send_time,
|
|
Timestamp now) {
|
|
const bool is_probe =
|
|
pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe;
|
|
// If first packet in probe, insert a small padding packet so we have a
|
|
// more reliable start window for the rate estimation.
|
|
if (is_probe && pacing_info.probe_cluster_bytes_sent == 0) {
|
|
auto padding = packet_sender_->GeneratePadding(DataSize::Bytes(1));
|
|
// If no RTP modules sending media are registered, we may not get a
|
|
// padding packet back.
|
|
if (!padding.empty()) {
|
|
// We should never get more than one padding packets with a requested
|
|
// size of 1 byte.
|
|
RTC_DCHECK_EQ(padding.size(), 1u);
|
|
return std::move(padding[0]);
|
|
}
|
|
}
|
|
|
|
if (packet_queue_.Empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// First, check if there is any reason _not_ to send the next queued packet.
|
|
// Unpaced packets and probes are exempted from send checks.
|
|
if (NextUnpacedSendTime().IsInfinite() && !is_probe) {
|
|
if (congested_) {
|
|
// Don't send anything if congested.
|
|
return nullptr;
|
|
}
|
|
|
|
if (now <= target_send_time && send_burst_interval_.IsZero()) {
|
|
// We allow sending slightly early if we think that we would actually
|
|
// had been able to, had we been right on time - i.e. the current debt
|
|
// is not more than would be reduced to zero at the target sent time.
|
|
// If we allow packets to be sent in a burst, packet are allowed to be
|
|
// sent early.
|
|
TimeDelta flush_time = media_debt_ / adjusted_media_rate_;
|
|
if (now + flush_time > target_send_time) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return packet_queue_.Pop();
|
|
}
|
|
|
|
void PacingController::OnPacketSent(RtpPacketMediaType packet_type,
|
|
DataSize packet_size,
|
|
Timestamp send_time) {
|
|
if (!first_sent_packet_time_ && packet_type != RtpPacketMediaType::kPadding) {
|
|
first_sent_packet_time_ = send_time;
|
|
}
|
|
|
|
bool audio_packet = packet_type == RtpPacketMediaType::kAudio;
|
|
if ((!audio_packet || account_for_audio_) && packet_size > DataSize::Zero()) {
|
|
UpdateBudgetWithSentData(packet_size);
|
|
}
|
|
|
|
last_send_time_ = send_time;
|
|
}
|
|
|
|
void PacingController::UpdateBudgetWithElapsedTime(TimeDelta delta) {
|
|
media_debt_ -= std::min(media_debt_, adjusted_media_rate_ * delta);
|
|
padding_debt_ -= std::min(padding_debt_, padding_rate_ * delta);
|
|
}
|
|
|
|
void PacingController::UpdateBudgetWithSentData(DataSize size) {
|
|
media_debt_ += size;
|
|
media_debt_ = std::min(media_debt_, adjusted_media_rate_ * kMaxDebtInTime);
|
|
UpdatePaddingBudgetWithSentData(size);
|
|
}
|
|
|
|
void PacingController::UpdatePaddingBudgetWithSentData(DataSize size) {
|
|
padding_debt_ += size;
|
|
padding_debt_ = std::min(padding_debt_, padding_rate_ * kMaxDebtInTime);
|
|
}
|
|
|
|
void PacingController::SetQueueTimeLimit(TimeDelta limit) {
|
|
queue_time_limit_ = limit;
|
|
}
|
|
|
|
void PacingController::MaybeUpdateMediaRateDueToLongQueue(Timestamp now) {
|
|
adjusted_media_rate_ = pacing_rate_;
|
|
if (!drain_large_queues_) {
|
|
return;
|
|
}
|
|
|
|
DataSize queue_size_data = QueueSizeData();
|
|
if (queue_size_data > DataSize::Zero()) {
|
|
// Assuming equal size packets and input/output rate, the average packet
|
|
// has avg_time_left_ms left to get queue_size_bytes out of the queue, if
|
|
// time constraint shall be met. Determine bitrate needed for that.
|
|
packet_queue_.UpdateAverageQueueTime(now);
|
|
TimeDelta avg_time_left =
|
|
std::max(TimeDelta::Millis(1),
|
|
queue_time_limit_ - packet_queue_.AverageQueueTime());
|
|
DataRate min_rate_needed = queue_size_data / avg_time_left;
|
|
if (min_rate_needed > pacing_rate_) {
|
|
adjusted_media_rate_ = min_rate_needed;
|
|
RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps="
|
|
<< pacing_rate_.kbps();
|
|
}
|
|
}
|
|
}
|
|
|
|
Timestamp PacingController::NextUnpacedSendTime() const {
|
|
if (!pace_audio_) {
|
|
Timestamp leading_audio_send_time =
|
|
packet_queue_.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio);
|
|
if (leading_audio_send_time.IsFinite()) {
|
|
return leading_audio_send_time;
|
|
}
|
|
}
|
|
if (fast_retransmissions_) {
|
|
Timestamp leading_retransmission_send_time =
|
|
packet_queue_.LeadingPacketEnqueueTime(
|
|
RtpPacketMediaType::kRetransmission);
|
|
if (leading_retransmission_send_time.IsFinite()) {
|
|
return leading_retransmission_send_time;
|
|
}
|
|
}
|
|
return Timestamp::MinusInfinity();
|
|
}
|
|
|
|
} // namespace webrtc
|