Per Åhgren 6204adf2ed AEC3: Loosen the echo removal requirements in conservative mode
This CL lowers the margins in the AEC3 conservative mode to increase
the transparency when there are audio buffer issues, and during call
startup.

In particular, this CL adjusts the parameters and thresholds to
-Make the requirements for filter divergence more strict, to minimize
the transparency loss during minor filter divergence.
-Decrease the echo power uncertainty used during initial filter
convergence, to increase transparency after audio buffer issues.
-Deactivate the enforcement of conservative suppressor gain after
audio buffer.

Bug: webrtc:9641,chromium:875611
Change-Id: Ie171bb411f17a1e8661c291118debd334f65c74f
Reviewed-on: https://webrtc-review.googlesource.com/94776
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org>
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24333}
2018-08-19 10:43:46 +00:00

462 lines
16 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <numeric>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableTransparentMode() {
return !field_trial::IsEnabled("WebRTC-Aec3TransparentModeKillSwitch");
}
bool EnableStationaryRenderImprovements() {
return !field_trial::IsEnabled(
"WebRTC-Aec3StationaryRenderImprovementsKillSwitch");
}
bool EnableEnforcingDelayAfterRealignment() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EnforceDelayAfterRealignmentKillSwitch");
}
bool EnableLinearModeWithDivergedFilter() {
return !field_trial::IsEnabled(
"WebRTC-Aec3LinearModeWithDivergedFilterKillSwitch");
}
bool EnableEarlyFilterUsage() {
return !field_trial::IsEnabled("WebRTC-Aec3EarlyLinearFilterUsageKillSwitch");
}
bool EnableShortInitialState() {
return !field_trial::IsEnabled("WebRTC-Aec3ShortInitialStateKillSwitch");
}
bool EnableNoWaitForAlignment() {
return !field_trial::IsEnabled("WebRTC-Aec3NoAlignmentWaitKillSwitch");
}
bool EnableConvergenceTriggeredLinearMode() {
return !field_trial::IsEnabled(
"WebRTC-Aec3ConvergenceTriggingLinearKillSwitch");
}
bool EnableUncertaintyUntilSufficientAdapted() {
return !field_trial::IsEnabled(
"WebRTC-Aec3ErleUncertaintyUntilSufficientlyAdaptedKillSwitch");
}
bool TreatTransparentModeAsNonlinear() {
return !field_trial::IsEnabled(
"WebRTC-Aec3TreatTransparentModeAsNonlinearKillSwitch");
}
bool LowUncertaintyBeforeConvergence() {
return !field_trial::IsEnabled(
"WebRTC-Aec3LowUncertaintyBeforeConvergenceKillSwitch");
}
bool MediumUncertaintyBeforeConvergence() {
return !field_trial::IsEnabled(
"WebRTC-Aec3MediumUncertaintyBeforeConvergenceKillSwitch");
}
bool EarlyEntryToConvergedMode() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EarlyEntryToConvergedModeKillSwitch");
}
bool ConservativeFilterDivergence() {
return !field_trial::IsEnabled(
"WebRTC-Aec3ConservativeFilterDivergenceKillSwitch");
}
bool UseEarlyLimiterDeactivation() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EarlyLimiterDeactivationKillSwitch");
}
float UncertaintyBeforeConvergence() {
if (LowUncertaintyBeforeConvergence()) {
return 1.f;
} else if (MediumUncertaintyBeforeConvergence()) {
return 4.f;
} else {
return 10.f;
}
}
float ComputeGainRampupIncrease(const EchoCanceller3Config& config) {
const auto& c = config.echo_removal_control.gain_rampup;
return powf(1.f / c.first_non_zero_gain, 1.f / c.non_zero_gain_blocks);
}
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
} // namespace
int AecState::instance_count_ = 0;
AecState::AecState(const EchoCanceller3Config& config)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
allow_transparent_mode_(EnableTransparentMode()),
use_stationary_properties_(
EnableStationaryRenderImprovements() &&
config_.echo_audibility.use_stationary_properties),
enforce_delay_after_realignment_(EnableEnforcingDelayAfterRealignment()),
allow_linear_mode_with_diverged_filter_(
EnableLinearModeWithDivergedFilter()),
early_filter_usage_activated_(EnableEarlyFilterUsage()),
use_short_initial_state_(EnableShortInitialState()),
convergence_trigger_linear_mode_(EnableConvergenceTriggeredLinearMode()),
no_alignment_required_for_linear_mode_(EnableNoWaitForAlignment()),
use_uncertainty_until_sufficiently_adapted_(
EnableUncertaintyUntilSufficientAdapted()),
transparent_mode_enforces_nonlinear_mode_(
TreatTransparentModeAsNonlinear()),
uncertainty_before_convergence_(UncertaintyBeforeConvergence()),
early_entry_to_converged_mode_(EarlyEntryToConvergedMode()),
conservative_filter_divergence_(ConservativeFilterDivergence()),
early_limiter_deactivation_(UseEarlyLimiterDeactivation()),
erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h),
max_render_(config_.filter.main.length_blocks, 0.f),
gain_rampup_increase_(ComputeGainRampupIncrease(config_)),
suppression_gain_limiter_(config_),
filter_analyzer_(config_),
blocks_since_converged_filter_(kBlocksSinceConvergencedFilterInit),
active_blocks_since_consistent_filter_estimate_(
kBlocksSinceConsistentEstimateInit),
reverb_model_estimator_(config) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
filter_analyzer_.Reset();
blocks_since_last_saturation_ = 0;
usable_linear_estimate_ = false;
diverged_linear_filter_ = false;
capture_signal_saturation_ = false;
echo_saturation_ = false;
std::fill(max_render_.begin(), max_render_.end(), 0.f);
blocks_with_proper_filter_adaptation_ = 0;
blocks_since_reset_ = 0;
filter_has_had_time_to_converge_ = false;
render_received_ = false;
blocks_with_active_render_ = 0;
initial_state_ = true;
suppression_gain_limiter_.Reset();
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
diverged_blocks_ = 0;
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
}
subtractor_output_analyzer_.HandleEchoPathChange();
}
void AecState::Update(
const absl::optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<const float> y) {
// Analyze the filter output.
subtractor_output_analyzer_.Update(subtractor_output);
const bool converged_filter = subtractor_output_analyzer_.ConvergedFilter();
const bool diverged_filter = subtractor_output_analyzer_.DivergedFilter();
// Analyze the filter and compute the delays.
filter_analyzer_.Update(adaptive_filter_impulse_response,
adaptive_filter_frequency_response, render_buffer);
filter_delay_blocks_ = filter_analyzer_.DelayBlocks();
if (enforce_delay_after_realignment_) {
if (external_delay &&
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
frames_since_external_delay_change_ = 0;
external_delay_ = external_delay;
}
if (blocks_with_proper_filter_adaptation_ < 2 * kNumBlocksPerSecond &&
external_delay_) {
filter_delay_blocks_ = config_.delay.delay_headroom_blocks;
}
}
if (filter_analyzer_.Consistent()) {
internal_delay_ = filter_analyzer_.DelayBlocks();
} else {
internal_delay_ = absl::nullopt;
}
external_delay_seen_ = external_delay_seen_ || external_delay;
const std::vector<float>& x = render_buffer.Block(-filter_delay_blocks_)[0];
// Update counters.
++capture_block_counter_;
++blocks_since_reset_;
const bool active_render_block = DetectActiveRender(x);
blocks_with_active_render_ += active_render_block ? 1 : 0;
blocks_with_proper_filter_adaptation_ +=
active_render_block && !SaturatedCapture() ? 1 : 0;
// Update the limit on the echo suppression after an echo path change to avoid
// an initial echo burst.
suppression_gain_limiter_.Update(render_buffer.GetRenderActivity(),
transparent_mode_);
if (converged_filter && early_limiter_deactivation_) {
suppression_gain_limiter_.Deactivate();
}
if (UseStationaryProperties()) {
// Update the echo audibility evaluator.
echo_audibility_.Update(
render_buffer, FilterDelayBlocks(), external_delay_seen_,
config_.ep_strength.reverb_based_on_render ? ReverbDecay() : 0.f);
}
// Update the ERL and ERLE measures.
if (blocks_since_reset_ >= 2 * kNumBlocksPerSecond) {
const auto& X2 = render_buffer.Spectrum(filter_delay_blocks_);
erle_estimator_.Update(X2, Y2, E2_main, converged_filter);
if (converged_filter) {
erl_estimator_.Update(X2, Y2);
}
}
// Detect and flag echo saturation.
if (config_.ep_strength.echo_can_saturate) {
echo_saturation_ = DetectEchoSaturation(x, EchoPathGain());
}
if (early_filter_usage_activated_) {
filter_has_had_time_to_converge_ =
blocks_with_proper_filter_adaptation_ >= 0.8f * kNumBlocksPerSecond;
} else {
filter_has_had_time_to_converge_ =
blocks_with_proper_filter_adaptation_ >= 1.5f * kNumBlocksPerSecond;
}
if (converged_filter && early_entry_to_converged_mode_) {
filter_has_had_time_to_converge_ = true;
}
if (!filter_should_have_converged_) {
filter_should_have_converged_ =
blocks_with_proper_filter_adaptation_ > 6 * kNumBlocksPerSecond;
}
// Flag whether the initial state is still active.
if (use_short_initial_state_) {
initial_state_ =
blocks_with_proper_filter_adaptation_ < 2.5f * kNumBlocksPerSecond;
} else {
initial_state_ =
blocks_with_proper_filter_adaptation_ < 5 * kNumBlocksPerSecond;
}
// Update counters for the filter divergence and convergence.
diverged_blocks_ = diverged_filter ? diverged_blocks_ + 1 : 0;
if (diverged_blocks_ >= 60) {
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
} else {
blocks_since_converged_filter_ =
converged_filter ? 0 : blocks_since_converged_filter_ + 1;
}
if (converged_filter) {
active_blocks_since_converged_filter_ = 0;
} else if (active_render_block) {
++active_blocks_since_converged_filter_;
}
bool recently_converged_filter =
blocks_since_converged_filter_ < 60 * kNumBlocksPerSecond;
if (blocks_since_converged_filter_ > 20 * kNumBlocksPerSecond) {
converged_filter_count_ = 0;
} else if (converged_filter) {
++converged_filter_count_;
}
if (converged_filter_count_ > 50) {
finite_erl_ = true;
}
if (filter_analyzer_.Consistent() && filter_delay_blocks_ < 5) {
consistent_filter_seen_ = true;
active_blocks_since_consistent_filter_estimate_ = 0;
} else if (active_render_block) {
++active_blocks_since_consistent_filter_estimate_;
}
bool consistent_filter_estimate_not_seen;
if (!consistent_filter_seen_) {
consistent_filter_estimate_not_seen =
capture_block_counter_ > 5 * kNumBlocksPerSecond;
} else {
consistent_filter_estimate_not_seen =
active_blocks_since_consistent_filter_estimate_ >
30 * kNumBlocksPerSecond;
}
converged_filter_seen_ = converged_filter_seen_ || converged_filter;
// If no filter convergence is seen for a long time, reset the estimated
// properties of the echo path.
if (active_blocks_since_converged_filter_ > 60 * kNumBlocksPerSecond) {
converged_filter_seen_ = false;
finite_erl_ = false;
}
// After an amount of active render samples for which an echo should have been
// detected in the capture signal if the ERL was not infinite, flag that a
// transparent mode should be entered.
transparent_mode_ = !config_.ep_strength.bounded_erl && !finite_erl_;
transparent_mode_ =
transparent_mode_ &&
(consistent_filter_estimate_not_seen || !converged_filter_seen_);
transparent_mode_ = transparent_mode_ && filter_should_have_converged_;
transparent_mode_ = transparent_mode_ && allow_transparent_mode_;
usable_linear_estimate_ = !echo_saturation_;
if (convergence_trigger_linear_mode_) {
usable_linear_estimate_ =
usable_linear_estimate_ &&
((filter_has_had_time_to_converge_ && external_delay) ||
converged_filter_seen_);
} else {
usable_linear_estimate_ =
usable_linear_estimate_ && filter_has_had_time_to_converge_;
}
if (!no_alignment_required_for_linear_mode_) {
usable_linear_estimate_ = usable_linear_estimate_ && external_delay;
}
if (!config_.echo_removal_control.linear_and_stable_echo_path) {
usable_linear_estimate_ =
usable_linear_estimate_ && recently_converged_filter;
if (!allow_linear_mode_with_diverged_filter_) {
usable_linear_estimate_ = usable_linear_estimate_ && !diverged_filter;
}
}
if (transparent_mode_enforces_nonlinear_mode_) {
usable_linear_estimate_ = usable_linear_estimate_ && !TransparentMode();
}
use_linear_filter_output_ = usable_linear_estimate_ && !TransparentMode();
if (conservative_filter_divergence_) {
diverged_linear_filter_ =
subtractor_output_analyzer_.SeverelyDivergedFilter() &&
active_render_block;
} else {
diverged_linear_filter_ = diverged_filter;
}
const bool stationary_block =
use_stationary_properties_ && echo_audibility_.IsBlockStationary();
reverb_model_estimator_.Update(
filter_analyzer_.GetAdjustedFilter(), adaptive_filter_frequency_response,
erle_estimator_.GetInstLinearQualityEstimate(), filter_delay_blocks_,
usable_linear_estimate_, stationary_block);
erle_estimator_.Dump(data_dumper_);
reverb_model_estimator_.Dump(data_dumper_.get());
data_dumper_->DumpRaw("aec3_erl", Erl());
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
data_dumper_->DumpRaw("aec3_transparent_mode", transparent_mode_);
data_dumper_->DumpRaw("aec3_state_internal_delay",
internal_delay_ ? *internal_delay_ : -1);
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
data_dumper_->DumpRaw("aec3_consistent_filter",
filter_analyzer_.Consistent());
data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit());
data_dumper_->DumpRaw("aec3_initial_state", InitialState());
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
data_dumper_->DumpRaw("aec3_echo_saturation", echo_saturation_);
data_dumper_->DumpRaw("aec3_converged_filter", converged_filter);
data_dumper_->DumpRaw("aec3_diverged_filter", diverged_filter);
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
external_delay ? 1 : 0);
data_dumper_->DumpRaw("aec3_consistent_filter_estimate_not_seen",
consistent_filter_estimate_not_seen);
data_dumper_->DumpRaw("aec3_filter_should_have_converged",
filter_should_have_converged_);
data_dumper_->DumpRaw("aec3_filter_has_had_time_to_converge",
filter_has_had_time_to_converge_);
data_dumper_->DumpRaw("aec3_recently_converged_filter",
recently_converged_filter);
data_dumper_->DumpRaw("aec3_suppresion_gain_limiter_running",
IsSuppressionGainLimitActive());
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
GetReverbFrequencyResponse());
}
bool AecState::DetectActiveRender(rtc::ArrayView<const float> x) const {
const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
return x_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2;
}
bool AecState::DetectEchoSaturation(rtc::ArrayView<const float> x,
float echo_path_gain) {
RTC_DCHECK_LT(0, x.size());
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
// Set flag for potential presence of saturated echo
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
if (SaturatedCapture() && peak_echo_amplitude > 32000) {
blocks_since_last_saturation_ = 0;
} else {
++blocks_since_last_saturation_;
}
return blocks_since_last_saturation_ < 5;
}
} // namespace webrtc