Each audio processing step is given a pointer to an AudioBuffer, where it can read and write int data. This patch adds corresponding AudioBuffer methods to read and write float data; the buffer will automatically convert the stored data between int and float as necessary. This patch also modifies the echo cancellation step to make use of the new methods (it was already using floats internally; now it doesn't have to convert from and to ints anymore). (The reference data to the ApmTest.Process test had to be modified slightly; this is because the echo canceller no longer unnecessarily converts float data to int and then immediately back to float for each iteration in the loop in EchoCancellationImpl::ProcessCaptureAudio.) BUG= R=aluebs@webrtc.org, andrew@webrtc.org Review URL: https://webrtc-codereview.appspot.com/18399005 git-svn-id: http://webrtc.googlecode.com/svn/trunk@6138 4adac7df-926f-26a2-2b94-8c16560cd09d
524 lines
16 KiB
C++
524 lines
16 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/audio_buffer.h"
|
|
|
|
#include "webrtc/common_audio/include/audio_util.h"
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
enum {
|
|
kSamplesPer8kHzChannel = 80,
|
|
kSamplesPer16kHzChannel = 160,
|
|
kSamplesPer32kHzChannel = 320
|
|
};
|
|
|
|
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
assert(false);
|
|
return -1;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
return 1;
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return 2;
|
|
}
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
|
|
void StereoToMono(const float* left, const float* right, float* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) / 2;
|
|
}
|
|
}
|
|
|
|
void StereoToMono(const int16_t* left, const int16_t* right, int16_t* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) >> 1;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// One int16_t and one float ChannelBuffer that are kept in sync. The sync is
|
|
// broken when someone requests write access to either ChannelBuffer, and
|
|
// reestablished when someone requests the outdated ChannelBuffer. It is
|
|
// therefore safe to use the return value of ibuf() and fbuf() until the next
|
|
// call to the other method.
|
|
class IFChannelBuffer {
|
|
public:
|
|
IFChannelBuffer(int samples_per_channel, int num_channels)
|
|
: ivalid_(true),
|
|
ibuf_(samples_per_channel, num_channels),
|
|
fvalid_(true),
|
|
fbuf_(samples_per_channel, num_channels) {}
|
|
|
|
ChannelBuffer<int16_t>* ibuf() {
|
|
RefreshI();
|
|
fvalid_ = false;
|
|
return &ibuf_;
|
|
}
|
|
|
|
ChannelBuffer<float>* fbuf() {
|
|
RefreshF();
|
|
ivalid_ = false;
|
|
return &fbuf_;
|
|
}
|
|
|
|
private:
|
|
void RefreshF() {
|
|
if (!fvalid_) {
|
|
assert(ivalid_);
|
|
const int16_t* const int_data = ibuf_.data();
|
|
float* const float_data = fbuf_.data();
|
|
const int length = fbuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
float_data[i] = int_data[i];
|
|
fvalid_ = true;
|
|
}
|
|
}
|
|
|
|
void RefreshI() {
|
|
if (!ivalid_) {
|
|
assert(fvalid_);
|
|
const float* const float_data = fbuf_.data();
|
|
int16_t* const int_data = ibuf_.data();
|
|
const int length = ibuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
int_data[i] = WEBRTC_SPL_SAT(std::numeric_limits<int16_t>::max(),
|
|
float_data[i],
|
|
std::numeric_limits<int16_t>::min());
|
|
ivalid_ = true;
|
|
}
|
|
}
|
|
|
|
bool ivalid_;
|
|
ChannelBuffer<int16_t> ibuf_;
|
|
bool fvalid_;
|
|
ChannelBuffer<float> fbuf_;
|
|
};
|
|
|
|
class SplitChannelBuffer {
|
|
public:
|
|
SplitChannelBuffer(int samples_per_split_channel, int num_channels)
|
|
: low_(samples_per_split_channel, num_channels),
|
|
high_(samples_per_split_channel, num_channels) {
|
|
}
|
|
~SplitChannelBuffer() {}
|
|
|
|
int16_t* low_channel(int i) { return low_.ibuf()->channel(i); }
|
|
int16_t* high_channel(int i) { return high_.ibuf()->channel(i); }
|
|
float* low_channel_f(int i) { return low_.fbuf()->channel(i); }
|
|
float* high_channel_f(int i) { return high_.fbuf()->channel(i); }
|
|
|
|
private:
|
|
IFChannelBuffer low_;
|
|
IFChannelBuffer high_;
|
|
};
|
|
|
|
AudioBuffer::AudioBuffer(int input_samples_per_channel,
|
|
int num_input_channels,
|
|
int process_samples_per_channel,
|
|
int num_process_channels,
|
|
int output_samples_per_channel)
|
|
: input_samples_per_channel_(input_samples_per_channel),
|
|
num_input_channels_(num_input_channels),
|
|
proc_samples_per_channel_(process_samples_per_channel),
|
|
num_proc_channels_(num_process_channels),
|
|
output_samples_per_channel_(output_samples_per_channel),
|
|
samples_per_split_channel_(proc_samples_per_channel_),
|
|
num_mixed_channels_(0),
|
|
num_mixed_low_pass_channels_(0),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
is_muted_(false),
|
|
data_(NULL),
|
|
keyboard_data_(NULL),
|
|
channels_(new IFChannelBuffer(proc_samples_per_channel_,
|
|
num_proc_channels_)) {
|
|
assert(input_samples_per_channel_ > 0);
|
|
assert(proc_samples_per_channel_ > 0);
|
|
assert(output_samples_per_channel_ > 0);
|
|
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
|
|
assert(num_proc_channels_ <= num_input_channels);
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
|
|
output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Create an intermediate buffer for resampling.
|
|
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
input_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_.push_back(
|
|
new PushSincResampler(input_samples_per_channel_,
|
|
proc_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
output_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_.push_back(
|
|
new PushSincResampler(proc_samples_per_channel_,
|
|
output_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel) {
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
split_channels_.reset(new SplitChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
filter_states_.reset(new SplitFilterStates[num_proc_channels_]);
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout) {
|
|
assert(samples_per_channel == input_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_input_channels_);
|
|
InitForNewData();
|
|
|
|
if (HasKeyboardChannel(layout)) {
|
|
keyboard_data_ = data[KeyboardChannelIndex(layout)];
|
|
}
|
|
|
|
// Downmix.
|
|
const float* const* data_ptr = data;
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
StereoToMono(data[0],
|
|
data[1],
|
|
input_buffer_->channel(0),
|
|
input_samples_per_channel_);
|
|
data_ptr = input_buffer_->channels();
|
|
}
|
|
|
|
// Resample.
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data_ptr[i],
|
|
input_samples_per_channel_,
|
|
process_buffer_->channel(i),
|
|
proc_samples_per_channel_);
|
|
}
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
|
|
// Convert to int16.
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleAndRoundToInt16(data_ptr[i], proc_samples_per_channel_,
|
|
channels_->ibuf()->channel(i));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout,
|
|
float* const* data) {
|
|
assert(samples_per_channel == output_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_proc_channels_);
|
|
|
|
// Convert to float.
|
|
float* const* data_ptr = data;
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Convert to an intermediate buffer for subsequent resampling.
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleToFloat(channels_->ibuf()->channel(i),
|
|
proc_samples_per_channel_,
|
|
data_ptr[i]);
|
|
}
|
|
|
|
// Resample.
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_[i]->Resample(data_ptr[i],
|
|
proc_samples_per_channel_,
|
|
data[i],
|
|
output_samples_per_channel_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InitForNewData() {
|
|
data_ = NULL;
|
|
keyboard_data_ = NULL;
|
|
num_mixed_channels_ = 0;
|
|
num_mixed_low_pass_channels_ = 0;
|
|
reference_copied_ = false;
|
|
activity_ = AudioFrame::kVadUnknown;
|
|
is_muted_ = false;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::data(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (data_ != NULL) {
|
|
assert(channel == 0 && num_proc_channels_ == 1);
|
|
return data_;
|
|
}
|
|
|
|
return channels_->ibuf()->channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::data(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->data(channel));
|
|
}
|
|
|
|
float* AudioBuffer::data_f(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (data_ != NULL) {
|
|
// Need to make a copy of the data instead of just pointing to it, since
|
|
// we're about to convert it to float.
|
|
assert(channel == 0 && num_proc_channels_ == 1);
|
|
memcpy(channels_->ibuf()->channel(0), data_,
|
|
sizeof(*data_) * proc_samples_per_channel_);
|
|
data_ = NULL;
|
|
}
|
|
return channels_->fbuf()->channel(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_split_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (split_channels_.get() == NULL) {
|
|
return data(channel);
|
|
}
|
|
|
|
return split_channels_->low_channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_split_data(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->low_pass_split_data(channel));
|
|
}
|
|
|
|
float* AudioBuffer::low_pass_split_data_f(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
return split_channels_.get() ? split_channels_->low_channel_f(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::high_pass_split_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (split_channels_.get() == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return split_channels_->high_channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::high_pass_split_data(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->high_pass_split_data(channel));
|
|
}
|
|
|
|
float* AudioBuffer::high_pass_split_data_f(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
return split_channels_.get() ? split_channels_->high_channel_f(channel)
|
|
: NULL;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_mixed_channels_);
|
|
|
|
return mixed_channels_->channel(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_low_pass_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_mixed_low_pass_channels_);
|
|
|
|
return mixed_low_pass_channels_->channel(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::keyboard_data() const {
|
|
return keyboard_data_;
|
|
}
|
|
|
|
SplitFilterStates* AudioBuffer::filter_states(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
return &filter_states_[channel];
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
bool AudioBuffer::is_muted() const {
|
|
return is_muted_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_proc_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return proc_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_keyboard_channel() const {
|
|
// We don't resample the keyboard channel.
|
|
return input_samples_per_channel_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(proc_samples_per_channel_ == input_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
InitForNewData();
|
|
activity_ = frame->vad_activity_;
|
|
if (frame->energy_ == 0) {
|
|
is_muted_ = true;
|
|
}
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
// We can get away with a pointer assignment in this case.
|
|
data_ = frame->data_;
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(proc_samples_per_channel_ == output_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
if (data_) {
|
|
assert(num_proc_channels_ == 1);
|
|
assert(data_ == frame->data_);
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyAndMix(int num_mixed_channels) {
|
|
// We currently only support the stereo to mono case.
|
|
assert(num_proc_channels_ == 2);
|
|
assert(num_mixed_channels == 1);
|
|
if (!mixed_channels_.get()) {
|
|
mixed_channels_.reset(
|
|
new ChannelBuffer<int16_t>(proc_samples_per_channel_,
|
|
num_mixed_channels));
|
|
}
|
|
|
|
StereoToMono(channels_->ibuf()->channel(0),
|
|
channels_->ibuf()->channel(1),
|
|
mixed_channels_->channel(0),
|
|
proc_samples_per_channel_);
|
|
|
|
num_mixed_channels_ = num_mixed_channels;
|
|
}
|
|
|
|
void AudioBuffer::CopyAndMixLowPass(int num_mixed_channels) {
|
|
// We currently only support the stereo to mono case.
|
|
assert(num_proc_channels_ == 2);
|
|
assert(num_mixed_channels == 1);
|
|
if (!mixed_low_pass_channels_.get()) {
|
|
mixed_low_pass_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_mixed_channels));
|
|
}
|
|
|
|
StereoToMono(low_pass_split_data(0),
|
|
low_pass_split_data(1),
|
|
mixed_low_pass_channels_->channel(0),
|
|
samples_per_split_channel_);
|
|
|
|
num_mixed_low_pass_channels_ = num_mixed_channels;
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
if (!low_pass_reference_channels_.get()) {
|
|
low_pass_reference_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
low_pass_reference_channels_->CopyFrom(low_pass_split_data(i), i);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|