TimestampExtrapolator maps RTP timestamps of received video frames to local timestamps. As part of this mapping, the clock drift between the local and remote clock is estimated. Add the histogram WebRTC.Video.EstimatedClockDrift_ppm to log the relative clock drift in points per million. Bug: b/363166487 Change-Id: I0c2e628ef72c05a93e1f3138c8f71c77467130b7 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/368342 Reviewed-by: Rasmus Brandt <brandtr@webrtc.org> Commit-Queue: Johannes Kron <kron@webrtc.org> Cr-Commit-Position: refs/heads/main@{#43413}
323 lines
12 KiB
C++
323 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/timing/timestamp_extrapolator.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <limits>
|
|
#include <optional>
|
|
#include <string>
|
|
|
|
#include "api/units/frequency.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "api/units/timestamp.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
using ::testing::Eq;
|
|
using ::testing::Optional;
|
|
|
|
namespace {
|
|
|
|
constexpr Frequency kRtpHz = Frequency::KiloHertz(90);
|
|
constexpr Frequency k25Fps = Frequency::Hertz(25);
|
|
constexpr TimeDelta k25FpsDelay = 1 / k25Fps;
|
|
|
|
} // namespace
|
|
|
|
TEST(TimestampExtrapolatorTest, ExtrapolationOccursAfter2Packets) {
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
// No packets so no timestamp.
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(90000), Eq(std::nullopt));
|
|
|
|
uint32_t rtp = 90000;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
// First result is a bit confusing since it is based off the "start" time,
|
|
// which is arbitrary.
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp + 90000),
|
|
Optional(clock.CurrentTime() + TimeDelta::Seconds(1)));
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, ResetsAfter10SecondPause) {
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
uint32_t rtp = 90000;
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
|
|
rtp += 10 * kRtpHz.hertz();
|
|
clock.AdvanceTime(TimeDelta::Seconds(10) + TimeDelta::Micros(1));
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, TimestampExtrapolatesMultipleRtpWrapArounds) {
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
uint32_t rtp = std::numeric_limits<uint32_t>::max();
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
|
|
// One overflow. Static cast to avoid undefined behaviour with +=.
|
|
rtp += static_cast<uint32_t>(kRtpHz / k25Fps);
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
|
|
// Assert that extrapolation works across the boundary as expected.
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp + 90000),
|
|
Optional(clock.CurrentTime() + TimeDelta::Seconds(1)));
|
|
// This is not quite 1s since the math always rounds up.
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp - 90000),
|
|
Optional(clock.CurrentTime() - TimeDelta::Millis(999)));
|
|
|
|
// In order to avoid a wrap arounds reset, add a packet every 10s until we
|
|
// overflow twice.
|
|
constexpr TimeDelta kRtpOverflowDelay =
|
|
std::numeric_limits<uint32_t>::max() / kRtpHz;
|
|
const Timestamp overflow_time = clock.CurrentTime() + kRtpOverflowDelay * 2;
|
|
|
|
while (clock.CurrentTime() < overflow_time) {
|
|
clock.AdvanceTime(TimeDelta::Seconds(10));
|
|
// Static-cast before += to avoid undefined behaviour of overflow.
|
|
rtp += static_cast<uint32_t>(kRtpHz * TimeDelta::Seconds(10));
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
}
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, NegativeRtpTimestampWrapAround) {
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
uint32_t rtp = 0;
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
// Go backwards! Static cast to avoid undefined behaviour with -=.
|
|
rtp -= static_cast<uint32_t>(kRtpHz.hertz());
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime() - TimeDelta::Seconds(1)));
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, NegativeRtpTimestampWrapAroundSecondScenario) {
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
uint32_t rtp = 0;
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
// Go backwards! Static cast to avoid undefined behaviour with -=.
|
|
rtp -= static_cast<uint32_t>(kRtpHz * TimeDelta::Seconds(10));
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp), std::nullopt);
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, Slow90KHzClock) {
|
|
// This simulates a slow camera, which produces frames at 24Hz instead of
|
|
// 25Hz. The extrapolator should be able to resolve this with enough data.
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
constexpr TimeDelta k24FpsDelay = 1 / Frequency::Hertz(24);
|
|
uint32_t rtp = 90000;
|
|
|
|
// Slow camera will increment RTP at 25 FPS rate even though its producing at
|
|
// 24 FPS. After 25 frames the extrapolator should settle at this rate.
|
|
for (int i = 0; i < 25; ++i) {
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k24FpsDelay);
|
|
}
|
|
|
|
// The camera would normally produce 25 frames in 90K ticks, but is slow
|
|
// so takes 1s + k24FpsDelay for 90K ticks.
|
|
constexpr Frequency kSlowRtpHz = 90000 / (25 * k24FpsDelay);
|
|
// The extrapolator will be predicting that time at millisecond precision.
|
|
auto ts = ts_extrapolator.ExtrapolateLocalTime(rtp + kSlowRtpHz.hertz());
|
|
ASSERT_TRUE(ts.has_value());
|
|
EXPECT_EQ(ts->ms(), clock.TimeInMilliseconds() + 1000);
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, Fast90KHzClock) {
|
|
// This simulates a fast camera, which produces frames at 26Hz instead of
|
|
// 25Hz. The extrapolator should be able to resolve this with enough data.
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
constexpr TimeDelta k26FpsDelay = 1 / Frequency::Hertz(26);
|
|
uint32_t rtp = 90000;
|
|
|
|
// Fast camera will increment RTP at 25 FPS rate even though its producing at
|
|
// 26 FPS. After 25 frames the extrapolator should settle at this rate.
|
|
for (int i = 0; i < 25; ++i) {
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k26FpsDelay);
|
|
}
|
|
|
|
// The camera would normally produce 25 frames in 90K ticks, but is slow
|
|
// so takes 1s + k24FpsDelay for 90K ticks.
|
|
constexpr Frequency kSlowRtpHz = 90000 / (25 * k26FpsDelay);
|
|
// The extrapolator will be predicting that time at millisecond precision.
|
|
auto ts = ts_extrapolator.ExtrapolateLocalTime(rtp + kSlowRtpHz.hertz());
|
|
ASSERT_TRUE(ts.has_value());
|
|
EXPECT_EQ(ts->ms(), clock.TimeInMilliseconds() + 1000);
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, TimestampJump) {
|
|
// This simulates a jump in RTP timestamp, which could occur if a camera was
|
|
// swapped for example.
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
uint32_t rtp = 90000;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp + 90000),
|
|
Optional(clock.CurrentTime() + TimeDelta::Seconds(1)));
|
|
|
|
// Jump RTP.
|
|
uint32_t new_rtp = 1337 * 90000;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), new_rtp);
|
|
new_rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), new_rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(new_rtp),
|
|
Optional(clock.CurrentTime()));
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, GapInReceivedFrames) {
|
|
SimulatedClock clock(
|
|
Timestamp::Seconds(std::numeric_limits<uint32_t>::max() / 90000 - 31));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
uint32_t rtp = std::numeric_limits<uint32_t>::max();
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
|
|
rtp += 30 * 90000;
|
|
clock.AdvanceTime(TimeDelta::Seconds(30));
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
|
|
Optional(clock.CurrentTime()));
|
|
}
|
|
|
|
TEST(TimestampExtrapolatorTest, EstimatedClockDriftHistogram) {
|
|
const std::string kHistogramName = "WebRTC.Video.EstimatedClockDrift_ppm";
|
|
constexpr int kPpmTolerance = 50;
|
|
constexpr int kToPpmFactor = 1e6;
|
|
constexpr int kMinimumSamples = 3000;
|
|
constexpr Frequency k24Fps = Frequency::Hertz(24);
|
|
constexpr TimeDelta k24FpsDelay = 1 / k24Fps;
|
|
|
|
// This simulates a remote clock without drift with frames produced at 25 fps.
|
|
// Local scope to trigger the destructor of TimestampExtrapolator.
|
|
{
|
|
// Clear all histogram data.
|
|
metrics::Reset();
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
uint32_t rtp = 90000;
|
|
for (int i = 0; i < kMinimumSamples; ++i) {
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
}
|
|
}
|
|
EXPECT_EQ(metrics::NumSamples(kHistogramName), 1);
|
|
const int kExpectedIdealClockDriftPpm = 0;
|
|
EXPECT_NEAR(kExpectedIdealClockDriftPpm, metrics::MinSample(kHistogramName),
|
|
kPpmTolerance);
|
|
|
|
// This simulates a slow remote clock, where the RTP timestamps are
|
|
// incremented as if the camera was 25 fps even though frames arrive at 24
|
|
// fps. Local scope to trigger the destructor of TimestampExtrapolator.
|
|
{
|
|
// Clear all histogram data.
|
|
metrics::Reset();
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
uint32_t rtp = 90000;
|
|
for (int i = 0; i < kMinimumSamples; ++i) {
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
rtp += kRtpHz / k25Fps;
|
|
clock.AdvanceTime(k24FpsDelay);
|
|
}
|
|
}
|
|
EXPECT_EQ(metrics::NumSamples(kHistogramName), 1);
|
|
const int kExpectedSlowClockDriftPpm =
|
|
std::abs(k24Fps / k25Fps - 1.0) * kToPpmFactor;
|
|
EXPECT_NEAR(kExpectedSlowClockDriftPpm, metrics::MinSample(kHistogramName),
|
|
kPpmTolerance);
|
|
|
|
// This simulates a fast remote clock, where the RTP timestamps are
|
|
// incremented as if the camera was 24 fps even though frames arrive at 25
|
|
// fps. Local scope to trigger the destructor of TimestampExtrapolator.
|
|
{
|
|
// Clear all histogram data.
|
|
metrics::Reset();
|
|
SimulatedClock clock(Timestamp::Millis(1337));
|
|
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
|
|
|
|
uint32_t rtp = 90000;
|
|
for (int i = 0; i < kMinimumSamples; ++i) {
|
|
ts_extrapolator.Update(clock.CurrentTime(), rtp);
|
|
rtp += kRtpHz / k24Fps;
|
|
clock.AdvanceTime(k25FpsDelay);
|
|
}
|
|
}
|
|
EXPECT_EQ(metrics::NumSamples(kHistogramName), 1);
|
|
const int kExpectedFastClockDriftPpm = (k25Fps / k24Fps - 1.0) * kToPpmFactor;
|
|
EXPECT_NEAR(kExpectedFastClockDriftPpm, metrics::MinSample(kHistogramName),
|
|
kPpmTolerance);
|
|
}
|
|
|
|
} // namespace webrtc
|