We need to keep the lock until we have finished using the task runner returned by GetNextReadyRunner to ensure that we don't remove it from another thread. Additionally, we must get only one runner at a time in case the first runner removes the second runner. Bug: webrtc:10538 Change-Id: Idbd5610b67666238545b3a321fb79f7e86fcac56 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/132342 Reviewed-by: Niels Moller <nisse@webrtc.org> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Commit-Queue: Sebastian Jansson <srte@webrtc.org> Cr-Commit-Position: refs/heads/master@{#27584}
444 lines
14 KiB
C++
444 lines
14 KiB
C++
/*
|
|
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "test/time_controller/simulated_time_controller.h"
|
|
|
|
#include <algorithm>
|
|
#include <deque>
|
|
#include <list>
|
|
#include <map>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "absl/strings/string_view.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
// Helper function to remove from a std container by value.
|
|
template <class C>
|
|
bool RemoveByValue(C& vec, typename C::value_type val) {
|
|
auto it = std::find(vec.begin(), vec.end(), val);
|
|
if (it == vec.end())
|
|
return false;
|
|
vec.erase(it);
|
|
return true;
|
|
}
|
|
} // namespace
|
|
|
|
namespace sim_time_impl {
|
|
class SimulatedSequenceRunner : public ProcessThread, public TaskQueueBase {
|
|
public:
|
|
SimulatedSequenceRunner(SimulatedTimeControllerImpl* handler,
|
|
absl::string_view queue_name)
|
|
: handler_(handler), name_(queue_name) {}
|
|
~SimulatedSequenceRunner() override { handler_->Unregister(this); }
|
|
|
|
// Provides next run time.
|
|
Timestamp GetNextRunTime() const;
|
|
|
|
// Iterates through delayed tasks and modules and moves them to the ready set
|
|
// if they are supposed to execute by |at time|.
|
|
void UpdateReady(Timestamp at_time);
|
|
// Runs all ready tasks and modules and updates next run time.
|
|
void Run(Timestamp at_time);
|
|
|
|
// TaskQueueBase interface
|
|
void Delete() override;
|
|
// Note: PostTask is also in ProcessThread interface.
|
|
void PostTask(std::unique_ptr<QueuedTask> task) override;
|
|
void PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
|
uint32_t milliseconds) override;
|
|
|
|
// ProcessThread interface
|
|
void Start() override;
|
|
void Stop() override;
|
|
void WakeUp(Module* module) override;
|
|
void RegisterModule(Module* module, const rtc::Location& from) override;
|
|
void DeRegisterModule(Module* module) override;
|
|
// Promoted to public for use in SimulatedTimeControllerImpl::YieldExecution.
|
|
using CurrentTaskQueueSetter = TaskQueueBase::CurrentTaskQueueSetter;
|
|
|
|
private:
|
|
Timestamp GetCurrentTime() const { return handler_->CurrentTime(); }
|
|
void RunReadyTasks(Timestamp at_time) RTC_LOCKS_EXCLUDED(lock_);
|
|
void RunReadyModules(Timestamp at_time) RTC_EXCLUSIVE_LOCKS_REQUIRED(lock_);
|
|
void UpdateNextRunTime() RTC_EXCLUSIVE_LOCKS_REQUIRED(lock_);
|
|
Timestamp GetNextTime(Module* module, Timestamp at_time);
|
|
|
|
SimulatedTimeControllerImpl* const handler_;
|
|
const std::string name_;
|
|
|
|
rtc::CriticalSection lock_;
|
|
|
|
std::deque<std::unique_ptr<QueuedTask>> ready_tasks_ RTC_GUARDED_BY(lock_);
|
|
std::map<Timestamp, std::vector<std::unique_ptr<QueuedTask>>> delayed_tasks_
|
|
RTC_GUARDED_BY(lock_);
|
|
|
|
bool process_thread_running_ RTC_GUARDED_BY(lock_) = false;
|
|
std::vector<Module*> stopped_modules_ RTC_GUARDED_BY(lock_);
|
|
std::vector<Module*> ready_modules_ RTC_GUARDED_BY(lock_);
|
|
std::map<Timestamp, std::list<Module*>> delayed_modules_
|
|
RTC_GUARDED_BY(lock_);
|
|
|
|
Timestamp next_run_time_ RTC_GUARDED_BY(lock_) = Timestamp::PlusInfinity();
|
|
};
|
|
|
|
Timestamp SimulatedSequenceRunner::GetNextRunTime() const {
|
|
rtc::CritScope lock(&lock_);
|
|
return next_run_time_;
|
|
}
|
|
|
|
void SimulatedSequenceRunner::UpdateReady(Timestamp at_time) {
|
|
rtc::CritScope lock(&lock_);
|
|
for (auto it = delayed_tasks_.begin();
|
|
it != delayed_tasks_.end() && it->first <= at_time;
|
|
it = delayed_tasks_.erase(it)) {
|
|
for (auto& task : it->second) {
|
|
ready_tasks_.emplace_back(std::move(task));
|
|
}
|
|
}
|
|
for (auto it = delayed_modules_.begin();
|
|
it != delayed_modules_.end() && it->first <= at_time;
|
|
it = delayed_modules_.erase(it)) {
|
|
for (auto module : it->second) {
|
|
ready_modules_.push_back(module);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Run(Timestamp at_time) {
|
|
RunReadyTasks(at_time);
|
|
rtc::CritScope lock(&lock_);
|
|
RunReadyModules(at_time);
|
|
UpdateNextRunTime();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Delete() {
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
ready_tasks_.clear();
|
|
delayed_tasks_.clear();
|
|
}
|
|
delete this;
|
|
}
|
|
|
|
void SimulatedSequenceRunner::RunReadyTasks(Timestamp at_time) {
|
|
std::deque<std::unique_ptr<QueuedTask>> ready_tasks;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
ready_tasks.swap(ready_tasks_);
|
|
}
|
|
if (!ready_tasks.empty()) {
|
|
CurrentTaskQueueSetter set_current(this);
|
|
for (auto& ready : ready_tasks) {
|
|
bool delete_task = ready->Run();
|
|
if (delete_task) {
|
|
ready.reset();
|
|
} else {
|
|
ready.release();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::RunReadyModules(Timestamp at_time) {
|
|
if (!ready_modules_.empty()) {
|
|
CurrentTaskQueueSetter set_current(this);
|
|
for (auto* module : ready_modules_) {
|
|
module->Process();
|
|
delayed_modules_[GetNextTime(module, at_time)].push_back(module);
|
|
}
|
|
}
|
|
ready_modules_.clear();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::UpdateNextRunTime() {
|
|
if (!ready_tasks_.empty() || !ready_modules_.empty()) {
|
|
next_run_time_ = Timestamp::MinusInfinity();
|
|
} else {
|
|
next_run_time_ = Timestamp::PlusInfinity();
|
|
if (!delayed_tasks_.empty())
|
|
next_run_time_ = std::min(next_run_time_, delayed_tasks_.begin()->first);
|
|
if (!delayed_modules_.empty())
|
|
next_run_time_ =
|
|
std::min(next_run_time_, delayed_modules_.begin()->first);
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::PostTask(std::unique_ptr<QueuedTask> task) {
|
|
rtc::CritScope lock(&lock_);
|
|
ready_tasks_.emplace_back(std::move(task));
|
|
next_run_time_ = Timestamp::MinusInfinity();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
|
uint32_t milliseconds) {
|
|
rtc::CritScope lock(&lock_);
|
|
Timestamp target_time = GetCurrentTime() + TimeDelta::ms(milliseconds);
|
|
delayed_tasks_[target_time].push_back(std::move(task));
|
|
next_run_time_ = std::min(next_run_time_, target_time);
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Start() {
|
|
std::vector<Module*> starting;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
if (process_thread_running_)
|
|
return;
|
|
process_thread_running_ = true;
|
|
starting.swap(stopped_modules_);
|
|
}
|
|
for (auto& module : starting)
|
|
module->ProcessThreadAttached(this);
|
|
|
|
Timestamp at_time = GetCurrentTime();
|
|
rtc::CritScope lock(&lock_);
|
|
for (auto& module : starting)
|
|
delayed_modules_[GetNextTime(module, at_time)].push_back(module);
|
|
UpdateNextRunTime();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Stop() {
|
|
std::vector<Module*> stopping;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
process_thread_running_ = false;
|
|
|
|
for (auto* ready : ready_modules_)
|
|
stopped_modules_.push_back(ready);
|
|
ready_modules_.clear();
|
|
|
|
for (auto& delayed : delayed_modules_) {
|
|
for (auto mod : delayed.second)
|
|
stopped_modules_.push_back(mod);
|
|
}
|
|
delayed_modules_.clear();
|
|
|
|
stopping = stopped_modules_;
|
|
}
|
|
for (auto& module : stopping)
|
|
module->ProcessThreadAttached(nullptr);
|
|
}
|
|
|
|
void SimulatedSequenceRunner::WakeUp(Module* module) {
|
|
rtc::CritScope lock(&lock_);
|
|
// If we already are planning to run this module as soon as possible, we don't
|
|
// need to do anything.
|
|
for (auto mod : ready_modules_)
|
|
if (mod == module)
|
|
return;
|
|
|
|
for (auto it = delayed_modules_.begin(); it != delayed_modules_.end(); ++it) {
|
|
if (RemoveByValue(it->second, module))
|
|
break;
|
|
}
|
|
Timestamp next_time = GetNextTime(module, GetCurrentTime());
|
|
delayed_modules_[next_time].push_back(module);
|
|
next_run_time_ = std::min(next_run_time_, next_time);
|
|
}
|
|
|
|
void SimulatedSequenceRunner::RegisterModule(Module* module,
|
|
const rtc::Location& from) {
|
|
module->ProcessThreadAttached(this);
|
|
rtc::CritScope lock(&lock_);
|
|
if (!process_thread_running_) {
|
|
stopped_modules_.push_back(module);
|
|
} else {
|
|
Timestamp next_time = GetNextTime(module, GetCurrentTime());
|
|
delayed_modules_[next_time].push_back(module);
|
|
next_run_time_ = std::min(next_run_time_, next_time);
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::DeRegisterModule(Module* module) {
|
|
bool modules_running;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
if (!process_thread_running_) {
|
|
RemoveByValue(stopped_modules_, module);
|
|
} else {
|
|
bool removed = RemoveByValue(ready_modules_, module);
|
|
if (!removed) {
|
|
for (auto& pair : delayed_modules_) {
|
|
if (RemoveByValue(pair.second, module))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
modules_running = process_thread_running_;
|
|
}
|
|
if (modules_running)
|
|
module->ProcessThreadAttached(nullptr);
|
|
}
|
|
|
|
Timestamp SimulatedSequenceRunner::GetNextTime(Module* module,
|
|
Timestamp at_time) {
|
|
CurrentTaskQueueSetter set_current(this);
|
|
return at_time + TimeDelta::ms(module->TimeUntilNextProcess());
|
|
}
|
|
|
|
SimulatedTimeControllerImpl::SimulatedTimeControllerImpl(Timestamp start_time)
|
|
: thread_id_(rtc::CurrentThreadId()), current_time_(start_time) {}
|
|
|
|
SimulatedTimeControllerImpl::~SimulatedTimeControllerImpl() = default;
|
|
|
|
std::unique_ptr<TaskQueueBase, TaskQueueDeleter>
|
|
SimulatedTimeControllerImpl::CreateTaskQueue(
|
|
absl::string_view name,
|
|
TaskQueueFactory::Priority priority) const {
|
|
// TODO(srte): Remove the const cast when the interface is made mutable.
|
|
auto mutable_this = const_cast<SimulatedTimeControllerImpl*>(this);
|
|
auto task_queue = std::unique_ptr<SimulatedSequenceRunner, TaskQueueDeleter>(
|
|
new SimulatedSequenceRunner(mutable_this, name));
|
|
rtc::CritScope lock(&mutable_this->lock_);
|
|
mutable_this->runners_.push_back(task_queue.get());
|
|
return task_queue;
|
|
}
|
|
|
|
std::unique_ptr<ProcessThread> SimulatedTimeControllerImpl::CreateProcessThread(
|
|
const char* thread_name) {
|
|
rtc::CritScope lock(&lock_);
|
|
auto process_thread =
|
|
absl::make_unique<SimulatedSequenceRunner>(this, thread_name);
|
|
runners_.push_back(process_thread.get());
|
|
return process_thread;
|
|
}
|
|
|
|
|
|
void SimulatedTimeControllerImpl::YieldExecution() {
|
|
if (rtc::CurrentThreadId() == thread_id_) {
|
|
TaskQueueBase* yielding_from = TaskQueueBase::Current();
|
|
// Since we might continue execution on a process thread, we should reset
|
|
// the thread local task queue reference. This ensures that thread checkers
|
|
// won't think we are executing on the yielding task queue. It also ensure
|
|
// that TaskQueueBase::Current() won't return the yielding task queue.
|
|
SimulatedSequenceRunner::CurrentTaskQueueSetter reset_queue(nullptr);
|
|
RTC_DCHECK_RUN_ON(&thread_checker_);
|
|
// When we yield, we don't want to risk executing further tasks on the
|
|
// currently executing task queue. If there's a ready task that also yields,
|
|
// it's added to this set as well and only tasks on the remaining task
|
|
// queues are executed.
|
|
auto inserted = yielded_.insert(yielding_from);
|
|
RTC_DCHECK(inserted.second);
|
|
RunReadyRunners();
|
|
yielded_.erase(inserted.first);
|
|
}
|
|
}
|
|
|
|
void SimulatedTimeControllerImpl::RunReadyRunners() {
|
|
RTC_DCHECK_RUN_ON(&thread_checker_);
|
|
RTC_DCHECK_EQ(rtc::CurrentThreadId(), thread_id_);
|
|
Timestamp current_time = CurrentTime();
|
|
// We repeat until we have no ready left to handle tasks posted by ready
|
|
// runners.
|
|
while (true) {
|
|
rtc::CritScope lock(&lock_);
|
|
RTC_DCHECK(ready_runners_.empty());
|
|
for (auto* runner : runners_) {
|
|
if (yielded_.find(runner) == yielded_.end() &&
|
|
runner->GetNextRunTime() <= current_time) {
|
|
ready_runners_.push_back(runner);
|
|
}
|
|
}
|
|
if (ready_runners_.empty())
|
|
return;
|
|
while (!ready_runners_.empty()) {
|
|
auto* runner = ready_runners_.front();
|
|
ready_runners_.pop_front();
|
|
runner->UpdateReady(current_time);
|
|
// Note that the Run function might indirectly cause a call to
|
|
// Unregister() which will recursively grab |lock_| again to remove items
|
|
// from |ready_runners_|.
|
|
runner->Run(current_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
Timestamp SimulatedTimeControllerImpl::CurrentTime() const {
|
|
rtc::CritScope lock(&time_lock_);
|
|
return current_time_;
|
|
}
|
|
|
|
Timestamp SimulatedTimeControllerImpl::NextRunTime() const {
|
|
Timestamp current_time = CurrentTime();
|
|
Timestamp next_time = Timestamp::PlusInfinity();
|
|
rtc::CritScope lock(&lock_);
|
|
for (auto* runner : runners_) {
|
|
Timestamp next_run_time = runner->GetNextRunTime();
|
|
if (next_run_time <= current_time)
|
|
return current_time;
|
|
next_time = std::min(next_time, next_run_time);
|
|
}
|
|
return next_time;
|
|
}
|
|
|
|
void SimulatedTimeControllerImpl::AdvanceTime(Timestamp target_time) {
|
|
rtc::CritScope time_lock(&time_lock_);
|
|
RTC_DCHECK(target_time >= current_time_);
|
|
current_time_ = target_time;
|
|
}
|
|
|
|
void SimulatedTimeControllerImpl::Unregister(SimulatedSequenceRunner* runner) {
|
|
rtc::CritScope lock(&lock_);
|
|
bool removed = RemoveByValue(runners_, runner);
|
|
RTC_CHECK(removed);
|
|
RemoveByValue(ready_runners_, runner);
|
|
}
|
|
|
|
} // namespace sim_time_impl
|
|
|
|
GlobalSimulatedTimeController::GlobalSimulatedTimeController(
|
|
Timestamp start_time)
|
|
: sim_clock_(start_time.us()), impl_(start_time) {
|
|
global_clock_.SetTimeMicros(start_time.us());
|
|
}
|
|
|
|
GlobalSimulatedTimeController::~GlobalSimulatedTimeController() = default;
|
|
|
|
Clock* GlobalSimulatedTimeController::GetClock() {
|
|
return &sim_clock_;
|
|
}
|
|
|
|
TaskQueueFactory* GlobalSimulatedTimeController::GetTaskQueueFactory() {
|
|
return &impl_;
|
|
}
|
|
|
|
std::unique_ptr<ProcessThread>
|
|
GlobalSimulatedTimeController::CreateProcessThread(const char* thread_name) {
|
|
return impl_.CreateProcessThread(thread_name);
|
|
}
|
|
|
|
void GlobalSimulatedTimeController::Sleep(TimeDelta duration) {
|
|
rtc::ScopedYieldPolicy yield_policy(&impl_);
|
|
Timestamp current_time = impl_.CurrentTime();
|
|
Timestamp target_time = current_time + duration;
|
|
RTC_DCHECK_EQ(current_time.us(), rtc::TimeMicros());
|
|
while (current_time < target_time) {
|
|
impl_.RunReadyRunners();
|
|
Timestamp next_time = std::min(impl_.NextRunTime(), target_time);
|
|
impl_.AdvanceTime(next_time);
|
|
auto delta = next_time - current_time;
|
|
current_time = next_time;
|
|
sim_clock_.AdvanceTimeMicroseconds(delta.us());
|
|
global_clock_.AdvanceTimeMicros(delta.us());
|
|
}
|
|
}
|
|
|
|
void GlobalSimulatedTimeController::InvokeWithControlledYield(
|
|
std::function<void()> closure) {
|
|
rtc::ScopedYieldPolicy yield_policy(&impl_);
|
|
closure();
|
|
}
|
|
|
|
// namespace sim_time_impl
|
|
|
|
} // namespace webrtc
|