webrtc_m130/webrtc/video/vie_encoder.cc
perkj fa10b557d9 Releand of Let ViEEncoder handle resolution changes.
The original landed cl is in patchset 1.
The following patchset fix VideoQualityTest as well as fix the case where max_bitrate is set in the SendParams. A unit test is added for that as well.

Original cl description:
Let ViEEncoder handle resolution changes.

This cl move codec reconfiguration due to video frame size changes from WebRtcVideoSendStream to ViEEncoder.

With this change, many variables in WebRtcVideoSendStream no longer need to be locked.

BUG=webrtc:5687, webrtc:6371, webrtc:5332

Review-Url: https://codereview.webrtc.org/2386573002
Cr-Commit-Position: refs/heads/master@{#14467}
2016-10-03 06:45:33 +00:00

714 lines
26 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video/vie_encoder.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/trace_event.h"
#include "webrtc/base/timeutils.h"
#include "webrtc/modules/pacing/paced_sender.h"
#include "webrtc/modules/video_coding/include/video_coding.h"
#include "webrtc/modules/video_coding/include/video_coding_defines.h"
#include "webrtc/video/overuse_frame_detector.h"
#include "webrtc/video/send_statistics_proxy.h"
#include "webrtc/video_frame.h"
namespace webrtc {
namespace {
// Time interval for logging frame counts.
const int64_t kFrameLogIntervalMs = 60000;
VideoCodecType PayloadNameToCodecType(const std::string& payload_name) {
if (payload_name == "VP8")
return kVideoCodecVP8;
if (payload_name == "VP9")
return kVideoCodecVP9;
if (payload_name == "H264")
return kVideoCodecH264;
return kVideoCodecGeneric;
}
VideoCodec VideoEncoderConfigToVideoCodec(
const VideoEncoderConfig& config,
const std::vector<VideoStream>& streams,
const std::string& payload_name,
int payload_type) {
static const int kEncoderMinBitrateKbps = 30;
RTC_DCHECK(!streams.empty());
RTC_DCHECK_GE(config.min_transmit_bitrate_bps, 0);
VideoCodec video_codec;
memset(&video_codec, 0, sizeof(video_codec));
video_codec.codecType = PayloadNameToCodecType(payload_name);
switch (config.content_type) {
case VideoEncoderConfig::ContentType::kRealtimeVideo:
video_codec.mode = kRealtimeVideo;
break;
case VideoEncoderConfig::ContentType::kScreen:
video_codec.mode = kScreensharing;
if (streams.size() == 1 &&
streams[0].temporal_layer_thresholds_bps.size() == 1) {
video_codec.targetBitrate =
streams[0].temporal_layer_thresholds_bps[0] / 1000;
}
break;
}
if (config.encoder_specific_settings)
config.encoder_specific_settings->FillEncoderSpecificSettings(&video_codec);
switch (video_codec.codecType) {
case kVideoCodecVP8: {
if (!config.encoder_specific_settings)
video_codec.codecSpecific.VP8 = VideoEncoder::GetDefaultVp8Settings();
video_codec.codecSpecific.VP8.numberOfTemporalLayers =
static_cast<unsigned char>(
streams.back().temporal_layer_thresholds_bps.size() + 1);
break;
}
case kVideoCodecVP9: {
if (!config.encoder_specific_settings)
video_codec.codecSpecific.VP9 = VideoEncoder::GetDefaultVp9Settings();
if (video_codec.mode == kScreensharing &&
config.encoder_specific_settings) {
video_codec.codecSpecific.VP9.flexibleMode = true;
// For now VP9 screensharing use 1 temporal and 2 spatial layers.
RTC_DCHECK_EQ(1, video_codec.codecSpecific.VP9.numberOfTemporalLayers);
RTC_DCHECK_EQ(2, video_codec.codecSpecific.VP9.numberOfSpatialLayers);
}
video_codec.codecSpecific.VP9.numberOfTemporalLayers =
static_cast<unsigned char>(
streams.back().temporal_layer_thresholds_bps.size() + 1);
break;
}
case kVideoCodecH264: {
if (!config.encoder_specific_settings)
video_codec.codecSpecific.H264 = VideoEncoder::GetDefaultH264Settings();
break;
}
default:
// TODO(pbos): Support encoder_settings codec-agnostically.
RTC_DCHECK(!config.encoder_specific_settings)
<< "Encoder-specific settings for codec type not wired up.";
break;
}
strncpy(video_codec.plName, payload_name.c_str(), kPayloadNameSize - 1);
video_codec.plName[kPayloadNameSize - 1] = '\0';
video_codec.plType = payload_type;
video_codec.numberOfSimulcastStreams =
static_cast<unsigned char>(streams.size());
video_codec.minBitrate = streams[0].min_bitrate_bps / 1000;
if (video_codec.minBitrate < kEncoderMinBitrateKbps)
video_codec.minBitrate = kEncoderMinBitrateKbps;
RTC_DCHECK_LE(streams.size(), static_cast<size_t>(kMaxSimulcastStreams));
if (video_codec.codecType == kVideoCodecVP9) {
// If the vector is empty, bitrates will be configured automatically.
RTC_DCHECK(config.spatial_layers.empty() ||
config.spatial_layers.size() ==
video_codec.codecSpecific.VP9.numberOfSpatialLayers);
RTC_DCHECK_LE(video_codec.codecSpecific.VP9.numberOfSpatialLayers,
kMaxSimulcastStreams);
for (size_t i = 0; i < config.spatial_layers.size(); ++i)
video_codec.spatialLayers[i] = config.spatial_layers[i];
}
for (size_t i = 0; i < streams.size(); ++i) {
SimulcastStream* sim_stream = &video_codec.simulcastStream[i];
RTC_DCHECK_GT(streams[i].width, 0u);
RTC_DCHECK_GT(streams[i].height, 0u);
RTC_DCHECK_GT(streams[i].max_framerate, 0);
// Different framerates not supported per stream at the moment.
RTC_DCHECK_EQ(streams[i].max_framerate, streams[0].max_framerate);
RTC_DCHECK_GE(streams[i].min_bitrate_bps, 0);
RTC_DCHECK_GE(streams[i].target_bitrate_bps, streams[i].min_bitrate_bps);
RTC_DCHECK_GE(streams[i].max_bitrate_bps, streams[i].target_bitrate_bps);
RTC_DCHECK_GE(streams[i].max_qp, 0);
sim_stream->width = static_cast<uint16_t>(streams[i].width);
sim_stream->height = static_cast<uint16_t>(streams[i].height);
sim_stream->minBitrate = streams[i].min_bitrate_bps / 1000;
sim_stream->targetBitrate = streams[i].target_bitrate_bps / 1000;
sim_stream->maxBitrate = streams[i].max_bitrate_bps / 1000;
sim_stream->qpMax = streams[i].max_qp;
sim_stream->numberOfTemporalLayers = static_cast<unsigned char>(
streams[i].temporal_layer_thresholds_bps.size() + 1);
video_codec.width = std::max(video_codec.width,
static_cast<uint16_t>(streams[i].width));
video_codec.height = std::max(
video_codec.height, static_cast<uint16_t>(streams[i].height));
video_codec.minBitrate =
std::min(static_cast<uint16_t>(video_codec.minBitrate),
static_cast<uint16_t>(streams[i].min_bitrate_bps / 1000));
video_codec.maxBitrate += streams[i].max_bitrate_bps / 1000;
video_codec.qpMax = std::max(video_codec.qpMax,
static_cast<unsigned int>(streams[i].max_qp));
}
if (video_codec.maxBitrate == 0) {
// Unset max bitrate -> cap to one bit per pixel.
video_codec.maxBitrate =
(video_codec.width * video_codec.height * video_codec.maxFramerate) /
1000;
}
if (video_codec.maxBitrate < kEncoderMinBitrateKbps)
video_codec.maxBitrate = kEncoderMinBitrateKbps;
RTC_DCHECK_GT(streams[0].max_framerate, 0);
video_codec.maxFramerate = streams[0].max_framerate;
return video_codec;
}
// TODO(pbos): Lower these thresholds (to closer to 100%) when we handle
// pipelining encoders better (multiple input frames before something comes
// out). This should effectively turn off CPU adaptations for systems that
// remotely cope with the load right now.
CpuOveruseOptions GetCpuOveruseOptions(bool full_overuse_time) {
CpuOveruseOptions options;
if (full_overuse_time) {
options.low_encode_usage_threshold_percent = 150;
options.high_encode_usage_threshold_percent = 200;
}
return options;
}
} // namespace
class ViEEncoder::ConfigureEncoderTask : public rtc::QueuedTask {
public:
ConfigureEncoderTask(ViEEncoder* vie_encoder,
VideoEncoderConfig config,
size_t max_data_payload_length)
: vie_encoder_(vie_encoder),
config_(std::move(config)),
max_data_payload_length_(max_data_payload_length) {}
private:
bool Run() override {
vie_encoder_->ConfigureEncoderOnTaskQueue(std::move(config_),
max_data_payload_length_);
return true;
}
ViEEncoder* const vie_encoder_;
VideoEncoderConfig config_;
size_t max_data_payload_length_;
};
class ViEEncoder::EncodeTask : public rtc::QueuedTask {
public:
EncodeTask(const VideoFrame& frame,
ViEEncoder* vie_encoder,
int64_t time_when_posted_in_ms,
bool log_stats)
: vie_encoder_(vie_encoder),
time_when_posted_ms_(time_when_posted_in_ms),
log_stats_(log_stats) {
frame_.ShallowCopy(frame);
++vie_encoder_->posted_frames_waiting_for_encode_;
}
private:
bool Run() override {
RTC_DCHECK_RUN_ON(&vie_encoder_->encoder_queue_);
RTC_DCHECK_GT(vie_encoder_->posted_frames_waiting_for_encode_.Value(), 0);
++vie_encoder_->captured_frame_count_;
if (--vie_encoder_->posted_frames_waiting_for_encode_ == 0) {
vie_encoder_->EncodeVideoFrame(frame_, time_when_posted_ms_);
} else {
// There is a newer frame in flight. Do not encode this frame.
LOG(LS_VERBOSE)
<< "Incoming frame dropped due to that the encoder is blocked.";
++vie_encoder_->dropped_frame_count_;
}
if (log_stats_) {
LOG(LS_INFO) << "Number of frames: captured "
<< vie_encoder_->captured_frame_count_
<< ", dropped (due to encoder blocked) "
<< vie_encoder_->dropped_frame_count_ << ", interval_ms "
<< kFrameLogIntervalMs;
vie_encoder_->captured_frame_count_ = 0;
vie_encoder_->dropped_frame_count_ = 0;
}
return true;
}
VideoFrame frame_;
ViEEncoder* const vie_encoder_;
const int64_t time_when_posted_ms_;
const bool log_stats_;
};
// VideoSourceProxy is responsible ensuring thread safety between calls to
// ViEEncoder::SetSource that will happen on libjingles worker thread when a
// video capturer is connected to the encoder and the encoder task queue
// (encoder_queue_) where the encoder reports its VideoSinkWants.
class ViEEncoder::VideoSourceProxy {
public:
explicit VideoSourceProxy(ViEEncoder* vie_encoder)
: vie_encoder_(vie_encoder), source_(nullptr) {}
void SetSource(rtc::VideoSourceInterface<VideoFrame>* source) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&main_checker_);
rtc::VideoSourceInterface<VideoFrame>* old_source = nullptr;
{
rtc::CritScope lock(&crit_);
old_source = source_;
source_ = source;
}
if (old_source != source && old_source != nullptr) {
old_source->RemoveSink(vie_encoder_);
}
if (!source) {
return;
}
// TODO(perkj): Let VideoSourceProxy implement LoadObserver and truly send
// CPU load as sink wants.
rtc::VideoSinkWants wants;
source->AddOrUpdateSink(vie_encoder_, wants);
}
private:
rtc::CriticalSection crit_;
rtc::SequencedTaskChecker main_checker_;
ViEEncoder* vie_encoder_;
rtc::VideoSourceInterface<VideoFrame>* source_ GUARDED_BY(&crit_);
RTC_DISALLOW_COPY_AND_ASSIGN(VideoSourceProxy);
};
ViEEncoder::ViEEncoder(uint32_t number_of_cores,
SendStatisticsProxy* stats_proxy,
const VideoSendStream::Config::EncoderSettings& settings,
rtc::VideoSinkInterface<VideoFrame>* pre_encode_callback,
LoadObserver* overuse_callback,
EncodedFrameObserver* encoder_timing)
: shutdown_event_(true /* manual_reset */, false),
number_of_cores_(number_of_cores),
source_proxy_(new VideoSourceProxy(this)),
sink_(nullptr),
settings_(settings),
codec_type_(PayloadNameToCodecType(settings.payload_name)),
video_sender_(Clock::GetRealTimeClock(), this, this),
overuse_detector_(Clock::GetRealTimeClock(),
GetCpuOveruseOptions(settings.full_overuse_time),
this,
encoder_timing,
stats_proxy),
load_observer_(overuse_callback),
stats_proxy_(stats_proxy),
pre_encode_callback_(pre_encode_callback),
module_process_thread_(nullptr),
pending_encoder_reconfiguration_(false),
encoder_start_bitrate_bps_(0),
max_data_payload_length_(0),
last_observed_bitrate_bps_(0),
encoder_paused_and_dropped_frame_(false),
has_received_sli_(false),
picture_id_sli_(0),
has_received_rpsi_(false),
picture_id_rpsi_(0),
clock_(Clock::GetRealTimeClock()),
last_captured_timestamp_(0),
delta_ntp_internal_ms_(clock_->CurrentNtpInMilliseconds() -
clock_->TimeInMilliseconds()),
last_frame_log_ms_(clock_->TimeInMilliseconds()),
captured_frame_count_(0),
dropped_frame_count_(0),
encoder_queue_("EncoderQueue") {
encoder_queue_.PostTask([this, encoder_timing] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
video_sender_.RegisterExternalEncoder(
settings_.encoder, settings_.payload_type, settings_.internal_source);
overuse_detector_.StartCheckForOveruse();
});
}
ViEEncoder::~ViEEncoder() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(shutdown_event_.Wait(0))
<< "Must call ::Stop() before destruction.";
}
void ViEEncoder::Stop() {
RTC_DCHECK_RUN_ON(&thread_checker_);
source_proxy_->SetSource(nullptr);
encoder_queue_.PostTask([this] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
video_sender_.RegisterExternalEncoder(nullptr, settings_.payload_type,
false);
overuse_detector_.StopCheckForOveruse();
shutdown_event_.Set();
});
shutdown_event_.Wait(rtc::Event::kForever);
}
void ViEEncoder::RegisterProcessThread(ProcessThread* module_process_thread) {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(!module_process_thread_);
module_process_thread_ = module_process_thread;
module_process_thread_->RegisterModule(&video_sender_);
module_process_thread_checker_.DetachFromThread();
}
void ViEEncoder::DeRegisterProcessThread() {
RTC_DCHECK_RUN_ON(&thread_checker_);
module_process_thread_->DeRegisterModule(&video_sender_);
}
void ViEEncoder::SetSource(rtc::VideoSourceInterface<VideoFrame>* source) {
RTC_DCHECK_RUN_ON(&thread_checker_);
source_proxy_->SetSource(source);
}
void ViEEncoder::SetSink(EncoderSink* sink) {
encoder_queue_.PostTask([this, sink] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
sink_ = sink;
});
}
void ViEEncoder::SetStartBitrate(int start_bitrate_bps) {
encoder_queue_.PostTask([this, start_bitrate_bps] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
encoder_start_bitrate_bps_ = start_bitrate_bps;
});
}
void ViEEncoder::ConfigureEncoder(VideoEncoderConfig config,
size_t max_data_payload_length) {
encoder_queue_.PostTask(
std::unique_ptr<rtc::QueuedTask>(new ConfigureEncoderTask(
this, std::move(config), max_data_payload_length)));
}
void ViEEncoder::ConfigureEncoderOnTaskQueue(VideoEncoderConfig config,
size_t max_data_payload_length) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
RTC_DCHECK(sink_);
LOG(LS_INFO) << "ConfigureEncoder requested.";
max_data_payload_length_ = max_data_payload_length;
encoder_config_ = std::move(config);
pending_encoder_reconfiguration_ = true;
// Reconfigure the encoder now if the encoder has an internal source or
// if this is the first time the encoder is configured.
// Otherwise, the reconfiguration is deferred until the next frame to minimize
// the number of reconfigurations. The codec configuration depends on incoming
// video frame size.
if (!last_frame_info_ || settings_.internal_source) {
if (!last_frame_info_) {
last_frame_info_ = rtc::Optional<VideoFrameInfo>(
VideoFrameInfo(176, 144, kVideoRotation_0, false));
}
ReconfigureEncoder();
}
}
void ViEEncoder::ReconfigureEncoder() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
RTC_DCHECK(pending_encoder_reconfiguration_);
std::vector<VideoStream> streams =
encoder_config_.video_stream_factory->CreateEncoderStreams(
last_frame_info_->width, last_frame_info_->height, encoder_config_);
VideoCodec codec = VideoEncoderConfigToVideoCodec(
encoder_config_, streams, settings_.payload_name, settings_.payload_type);
codec.startBitrate =
std::max(encoder_start_bitrate_bps_ / 1000, codec.minBitrate);
codec.startBitrate = std::min(codec.startBitrate, codec.maxBitrate);
codec.expect_encode_from_texture = last_frame_info_->is_texture;
bool success = video_sender_.RegisterSendCodec(
&codec, number_of_cores_,
static_cast<uint32_t>(max_data_payload_length_)) == VCM_OK;
if (!success) {
LOG(LS_ERROR) << "Failed to configure encoder.";
RTC_DCHECK(success);
}
rate_allocator_.reset(new SimulcastRateAllocator(codec));
if (stats_proxy_) {
stats_proxy_->OnEncoderReconfigured(encoder_config_,
rate_allocator_->GetPreferedBitrate());
}
pending_encoder_reconfiguration_ = false;
if (stats_proxy_) {
stats_proxy_->OnEncoderReconfigured(encoder_config_,
rate_allocator_->GetPreferedBitrate());
}
sink_->OnEncoderConfigurationChanged(
std::move(streams), encoder_config_.min_transmit_bitrate_bps);
}
void ViEEncoder::OnFrame(const VideoFrame& video_frame) {
RTC_DCHECK_RUNS_SERIALIZED(&incoming_frame_race_checker_);
stats_proxy_->OnIncomingFrame(video_frame.width(), video_frame.height());
VideoFrame incoming_frame = video_frame;
// Local time in webrtc time base.
int64_t current_time = clock_->TimeInMilliseconds();
incoming_frame.set_render_time_ms(current_time);
// Capture time may come from clock with an offset and drift from clock_.
int64_t capture_ntp_time_ms;
if (video_frame.ntp_time_ms() != 0) {
capture_ntp_time_ms = video_frame.ntp_time_ms();
} else if (video_frame.render_time_ms() != 0) {
capture_ntp_time_ms = video_frame.render_time_ms() + delta_ntp_internal_ms_;
} else {
capture_ntp_time_ms = current_time + delta_ntp_internal_ms_;
}
incoming_frame.set_ntp_time_ms(capture_ntp_time_ms);
// Convert NTP time, in ms, to RTP timestamp.
const int kMsToRtpTimestamp = 90;
incoming_frame.set_timestamp(
kMsToRtpTimestamp * static_cast<uint32_t>(incoming_frame.ntp_time_ms()));
if (incoming_frame.ntp_time_ms() <= last_captured_timestamp_) {
// We don't allow the same capture time for two frames, drop this one.
LOG(LS_WARNING) << "Same/old NTP timestamp ("
<< incoming_frame.ntp_time_ms()
<< " <= " << last_captured_timestamp_
<< ") for incoming frame. Dropping.";
return;
}
bool log_stats = false;
if (current_time - last_frame_log_ms_ > kFrameLogIntervalMs) {
last_frame_log_ms_ = current_time;
log_stats = true;
}
last_captured_timestamp_ = incoming_frame.ntp_time_ms();
encoder_queue_.PostTask(std::unique_ptr<rtc::QueuedTask>(new EncodeTask(
incoming_frame, this, clock_->TimeInMilliseconds(), log_stats)));
}
bool ViEEncoder::EncoderPaused() const {
RTC_DCHECK_RUN_ON(&encoder_queue_);
// Pause video if paused by caller or as long as the network is down or the
// pacer queue has grown too large in buffered mode.
// If the pacer queue has grown too large or the network is down,
// last_observed_bitrate_bps_ will be 0.
return last_observed_bitrate_bps_ == 0;
}
void ViEEncoder::TraceFrameDropStart() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
// Start trace event only on the first frame after encoder is paused.
if (!encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = true;
return;
}
void ViEEncoder::TraceFrameDropEnd() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
// End trace event on first frame after encoder resumes, if frame was dropped.
if (encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = false;
}
void ViEEncoder::EncodeVideoFrame(const VideoFrame& video_frame,
int64_t time_when_posted_in_ms) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (pre_encode_callback_)
pre_encode_callback_->OnFrame(video_frame);
if (video_frame.width() != last_frame_info_->width ||
video_frame.height() != last_frame_info_->height ||
video_frame.rotation() != last_frame_info_->rotation ||
video_frame.is_texture() != last_frame_info_->is_texture) {
pending_encoder_reconfiguration_ = true;
last_frame_info_ = rtc::Optional<VideoFrameInfo>(
VideoFrameInfo(video_frame.width(), video_frame.height(),
video_frame.rotation(), video_frame.is_texture()));
LOG(LS_INFO) << "Video frame parameters changed: dimensions="
<< last_frame_info_->width << "x" << last_frame_info_->height
<< ", rotation=" << last_frame_info_->rotation
<< ", texture=" << last_frame_info_->is_texture;
}
if (pending_encoder_reconfiguration_) {
ReconfigureEncoder();
}
if (EncoderPaused()) {
TraceFrameDropStart();
return;
}
TraceFrameDropEnd();
TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", video_frame.render_time_ms(),
"Encode");
overuse_detector_.FrameCaptured(video_frame, time_when_posted_in_ms);
if (codec_type_ == webrtc::kVideoCodecVP8) {
webrtc::CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = webrtc::kVideoCodecVP8;
codec_specific_info.codecSpecific.VP8.hasReceivedRPSI =
has_received_rpsi_;
codec_specific_info.codecSpecific.VP8.hasReceivedSLI =
has_received_sli_;
codec_specific_info.codecSpecific.VP8.pictureIdRPSI =
picture_id_rpsi_;
codec_specific_info.codecSpecific.VP8.pictureIdSLI =
picture_id_sli_;
has_received_sli_ = false;
has_received_rpsi_ = false;
video_sender_.AddVideoFrame(video_frame, &codec_specific_info);
return;
}
video_sender_.AddVideoFrame(video_frame, nullptr);
}
void ViEEncoder::SendKeyFrame() {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask([this] { SendKeyFrame(); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
video_sender_.IntraFrameRequest(0);
}
EncodedImageCallback::Result ViEEncoder::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
// Encoded is called on whatever thread the real encoder implementation run
// on. In the case of hardware encoders, there might be several encoders
// running in parallel on different threads.
if (stats_proxy_) {
stats_proxy_->OnSendEncodedImage(encoded_image, codec_specific_info);
}
EncodedImageCallback::Result result =
sink_->OnEncodedImage(encoded_image, codec_specific_info, fragmentation);
int64_t time_sent = clock_->TimeInMilliseconds();
uint32_t timestamp = encoded_image._timeStamp;
encoder_queue_.PostTask([this, timestamp, time_sent] {
RTC_DCHECK_RUN_ON(&encoder_queue_);
overuse_detector_.FrameSent(timestamp, time_sent);
});
return result;
}
void ViEEncoder::SendStatistics(uint32_t bit_rate, uint32_t frame_rate) {
RTC_DCHECK(module_process_thread_checker_.CalledOnValidThread());
if (stats_proxy_)
stats_proxy_->OnEncoderStatsUpdate(frame_rate, bit_rate);
}
void ViEEncoder::OnReceivedSLI(uint8_t picture_id) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask([this, picture_id] { OnReceivedSLI(picture_id); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
picture_id_sli_ = picture_id;
has_received_sli_ = true;
}
void ViEEncoder::OnReceivedRPSI(uint64_t picture_id) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask([this, picture_id] { OnReceivedRPSI(picture_id); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
picture_id_rpsi_ = picture_id;
has_received_rpsi_ = true;
}
void ViEEncoder::OnReceivedIntraFrameRequest(size_t stream_index) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask(
[this, stream_index] { OnReceivedIntraFrameRequest(stream_index); });
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
// Key frame request from remote side, signal to VCM.
TRACE_EVENT0("webrtc", "OnKeyFrameRequest");
video_sender_.IntraFrameRequest(stream_index);
}
void ViEEncoder::OnBitrateUpdated(uint32_t bitrate_bps,
uint8_t fraction_lost,
int64_t round_trip_time_ms) {
if (!encoder_queue_.IsCurrent()) {
encoder_queue_.PostTask(
[this, bitrate_bps, fraction_lost, round_trip_time_ms] {
OnBitrateUpdated(bitrate_bps, fraction_lost, round_trip_time_ms);
});
return;
}
RTC_DCHECK_RUN_ON(&encoder_queue_);
RTC_DCHECK(sink_) << "sink_ must be set before the encoder is active.";
LOG(LS_VERBOSE) << "OnBitrateUpdated, bitrate " << bitrate_bps
<< " packet loss " << static_cast<int>(fraction_lost)
<< " rtt " << round_trip_time_ms;
video_sender_.SetChannelParameters(bitrate_bps, fraction_lost,
round_trip_time_ms);
encoder_start_bitrate_bps_ =
bitrate_bps != 0 ? bitrate_bps : encoder_start_bitrate_bps_;
bool video_is_suspended = bitrate_bps == 0;
bool video_suspension_changed =
video_is_suspended != (last_observed_bitrate_bps_ == 0);
last_observed_bitrate_bps_ = bitrate_bps;
if (stats_proxy_ && video_suspension_changed) {
LOG(LS_INFO) << "Video suspend state changed to: "
<< (video_is_suspended ? "suspended" : "not suspended");
stats_proxy_->OnSuspendChange(video_is_suspended);
}
}
void ViEEncoder::OveruseDetected() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
// TODO(perkj): When ViEEncoder inherit rtc::VideoSink instead of
// VideoCaptureInput |load_observer_| should be removed and overuse be
// expressed as rtc::VideoSinkWants instead.
if (load_observer_)
load_observer_->OnLoadUpdate(LoadObserver::kOveruse);
}
void ViEEncoder::NormalUsage() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (load_observer_)
load_observer_->OnLoadUpdate(LoadObserver::kUnderuse);
}
} // namespace webrtc