webrtc_m130/common_video/h264/pps_parser.cc
Björn Terelius a77e16ca2c Update BitBuffer methods to style guide
Specifically, use reference instead of pointer for out parameter
and place the out parameter last, for the following methods

ReadUInt8
ReadUInt16
ReadUInt32
ReadBits
PeekBits
ReadNonSymmetric
ReadSignedExponentialGolomb
ReadExponentialGolomb

Bug: webrtc:11933
Change-Id: I3f1efe3e29155985277b0cd18700ddea25fe7914
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/218504
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34037}
2021-05-18 11:10:27 +00:00

205 lines
7.9 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_video/h264/pps_parser.h"
#include <cstdint>
#include <vector>
#include "common_video/h264/h264_common.h"
#include "rtc_base/bit_buffer.h"
#include "rtc_base/checks.h"
#define RETURN_EMPTY_ON_FAIL(x) \
do { \
if (!(x)) { \
return absl::nullopt; \
} \
} while (0)
namespace {
const int kMaxPicInitQpDeltaValue = 25;
const int kMinPicInitQpDeltaValue = -26;
} // namespace
namespace webrtc {
// General note: this is based off the 02/2014 version of the H.264 standard.
// You can find it on this page:
// http://www.itu.int/rec/T-REC-H.264
absl::optional<PpsParser::PpsState> PpsParser::ParsePps(const uint8_t* data,
size_t length) {
// First, parse out rbsp, which is basically the source buffer minus emulation
// bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in
// section 7.3.1 of the H.264 standard.
std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length);
rtc::BitBuffer bit_buffer(unpacked_buffer.data(), unpacked_buffer.size());
return ParseInternal(&bit_buffer);
}
bool PpsParser::ParsePpsIds(const uint8_t* data,
size_t length,
uint32_t* pps_id,
uint32_t* sps_id) {
RTC_DCHECK(pps_id);
RTC_DCHECK(sps_id);
// First, parse out rbsp, which is basically the source buffer minus emulation
// bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in
// section 7.3.1 of the H.264 standard.
std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length);
rtc::BitBuffer bit_buffer(unpacked_buffer.data(), unpacked_buffer.size());
return ParsePpsIdsInternal(&bit_buffer, pps_id, sps_id);
}
absl::optional<uint32_t> PpsParser::ParsePpsIdFromSlice(const uint8_t* data,
size_t length) {
std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length);
rtc::BitBuffer slice_reader(unpacked_buffer.data(), unpacked_buffer.size());
uint32_t golomb_tmp;
// first_mb_in_slice: ue(v)
if (!slice_reader.ReadExponentialGolomb(golomb_tmp))
return absl::nullopt;
// slice_type: ue(v)
if (!slice_reader.ReadExponentialGolomb(golomb_tmp))
return absl::nullopt;
// pic_parameter_set_id: ue(v)
uint32_t slice_pps_id;
if (!slice_reader.ReadExponentialGolomb(slice_pps_id))
return absl::nullopt;
return slice_pps_id;
}
absl::optional<PpsParser::PpsState> PpsParser::ParseInternal(
rtc::BitBuffer* bit_buffer) {
PpsState pps;
RETURN_EMPTY_ON_FAIL(ParsePpsIdsInternal(bit_buffer, &pps.id, &pps.sps_id));
uint32_t bits_tmp;
uint32_t golomb_ignored;
// entropy_coding_mode_flag: u(1)
uint32_t entropy_coding_mode_flag;
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(1, entropy_coding_mode_flag));
pps.entropy_coding_mode_flag = entropy_coding_mode_flag != 0;
// bottom_field_pic_order_in_frame_present_flag: u(1)
uint32_t bottom_field_pic_order_in_frame_present_flag;
RETURN_EMPTY_ON_FAIL(
bit_buffer->ReadBits(1, bottom_field_pic_order_in_frame_present_flag));
pps.bottom_field_pic_order_in_frame_present_flag =
bottom_field_pic_order_in_frame_present_flag != 0;
// num_slice_groups_minus1: ue(v)
uint32_t num_slice_groups_minus1;
RETURN_EMPTY_ON_FAIL(
bit_buffer->ReadExponentialGolomb(num_slice_groups_minus1));
if (num_slice_groups_minus1 > 0) {
uint32_t slice_group_map_type;
// slice_group_map_type: ue(v)
RETURN_EMPTY_ON_FAIL(
bit_buffer->ReadExponentialGolomb(slice_group_map_type));
if (slice_group_map_type == 0) {
for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
++i_group) {
// run_length_minus1[iGroup]: ue(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
}
} else if (slice_group_map_type == 1) {
// TODO(sprang): Implement support for dispersed slice group map type.
// See 8.2.2.2 Specification for dispersed slice group map type.
} else if (slice_group_map_type == 2) {
for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
++i_group) {
// top_left[iGroup]: ue(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
// bottom_right[iGroup]: ue(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
}
} else if (slice_group_map_type == 3 || slice_group_map_type == 4 ||
slice_group_map_type == 5) {
// slice_group_change_direction_flag: u(1)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(1, bits_tmp));
// slice_group_change_rate_minus1: ue(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
} else if (slice_group_map_type == 6) {
// pic_size_in_map_units_minus1: ue(v)
uint32_t pic_size_in_map_units_minus1;
RETURN_EMPTY_ON_FAIL(
bit_buffer->ReadExponentialGolomb(pic_size_in_map_units_minus1));
uint32_t slice_group_id_bits = 0;
uint32_t num_slice_groups = num_slice_groups_minus1 + 1;
// If num_slice_groups is not a power of two an additional bit is required
// to account for the ceil() of log2() below.
if ((num_slice_groups & (num_slice_groups - 1)) != 0)
++slice_group_id_bits;
while (num_slice_groups > 0) {
num_slice_groups >>= 1;
++slice_group_id_bits;
}
for (uint32_t i = 0; i <= pic_size_in_map_units_minus1; i++) {
// slice_group_id[i]: u(v)
// Represented by ceil(log2(num_slice_groups_minus1 + 1)) bits.
RETURN_EMPTY_ON_FAIL(
bit_buffer->ReadBits(slice_group_id_bits, bits_tmp));
}
}
}
// num_ref_idx_l0_default_active_minus1: ue(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
// num_ref_idx_l1_default_active_minus1: ue(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
// weighted_pred_flag: u(1)
uint32_t weighted_pred_flag;
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(1, weighted_pred_flag));
pps.weighted_pred_flag = weighted_pred_flag != 0;
// weighted_bipred_idc: u(2)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(2, pps.weighted_bipred_idc));
// pic_init_qp_minus26: se(v)
RETURN_EMPTY_ON_FAIL(
bit_buffer->ReadSignedExponentialGolomb(pps.pic_init_qp_minus26));
// Sanity-check parsed value
if (pps.pic_init_qp_minus26 > kMaxPicInitQpDeltaValue ||
pps.pic_init_qp_minus26 < kMinPicInitQpDeltaValue) {
RETURN_EMPTY_ON_FAIL(false);
}
// pic_init_qs_minus26: se(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
// chroma_qp_index_offset: se(v)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored));
// deblocking_filter_control_present_flag: u(1)
// constrained_intra_pred_flag: u(1)
RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(2, bits_tmp));
// redundant_pic_cnt_present_flag: u(1)
RETURN_EMPTY_ON_FAIL(
bit_buffer->ReadBits(1, pps.redundant_pic_cnt_present_flag));
return pps;
}
bool PpsParser::ParsePpsIdsInternal(rtc::BitBuffer* bit_buffer,
uint32_t* pps_id,
uint32_t* sps_id) {
if (pps_id == nullptr)
return false;
// pic_parameter_set_id: ue(v)
if (!bit_buffer->ReadExponentialGolomb(*pps_id))
return false;
if (sps_id == nullptr)
return false;
// seq_parameter_set_id: ue(v)
if (!bit_buffer->ReadExponentialGolomb(*sps_id))
return false;
return true;
}
} // namespace webrtc