The DtlsTransport tests worked by relying on JsepTransport (a helper class used by higher layers to set everything up in response to SDP). dtlstransport_unittest has been switched to just calling SetSslRole and SetRemoteFingerprint directly instead, which were really the only parts that were necessary. Some refactoring was also done, and some test coverage was moved to jseptransport_unittest. jseptransport_unittests has more coverage to ensure that negotiated parameters are propagated to the DtlsTransport underneath, which were previously covered by the tests in dtlstransport_unittest. It also has a test that covers RTP/RTCP not being multiplexed, which dtlstransport_unittests really doesn't need to be concerned about. BUG=NONE Change-Id: I1d67e9a06486ade39a255555af4052d76191d238 Reviewed-on: https://webrtc-review.googlesource.com/32941 Commit-Queue: Taylor Brandstetter <deadbeef@webrtc.org> Reviewed-by: Peter Thatcher <pthatcher@webrtc.org> Cr-Commit-Position: refs/heads/master@{#21309}
737 lines
29 KiB
C++
737 lines
29 KiB
C++
/*
|
|
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <set>
|
|
|
|
#include "p2p/base/dtlstransport.h"
|
|
#include "p2p/base/fakeicetransport.h"
|
|
#include "p2p/base/packettransportinternal.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/dscp.h"
|
|
#include "rtc_base/gunit.h"
|
|
#include "rtc_base/helpers.h"
|
|
#include "rtc_base/ssladapter.h"
|
|
#include "rtc_base/sslidentity.h"
|
|
#include "rtc_base/sslstreamadapter.h"
|
|
#include "rtc_base/stringutils.h"
|
|
|
|
#define MAYBE_SKIP_TEST(feature) \
|
|
if (!(rtc::SSLStreamAdapter::feature())) { \
|
|
RTC_LOG(LS_INFO) << #feature " feature disabled... skipping"; \
|
|
return; \
|
|
}
|
|
|
|
namespace cricket {
|
|
|
|
static const size_t kPacketNumOffset = 8;
|
|
static const size_t kPacketHeaderLen = 12;
|
|
static const int kFakePacketId = 0x1234;
|
|
static const int kTimeout = 10000;
|
|
|
|
static bool IsRtpLeadByte(uint8_t b) {
|
|
return ((b & 0xC0) == 0x80);
|
|
}
|
|
|
|
// |modify_digest| is used to set modified fingerprints that are meant to fail
|
|
// validation.
|
|
void SetRemoteFingerprintFromCert(
|
|
DtlsTransport* transport,
|
|
const rtc::scoped_refptr<rtc::RTCCertificate>& cert,
|
|
bool modify_digest = false) {
|
|
rtc::SSLFingerprint* fingerprint =
|
|
rtc::SSLFingerprint::CreateFromCertificate(cert);
|
|
if (modify_digest) {
|
|
++fingerprint->digest[0];
|
|
}
|
|
// Even if digest is verified to be incorrect, should fail asynchrnously.
|
|
EXPECT_TRUE(transport->SetRemoteFingerprint(
|
|
fingerprint->algorithm,
|
|
reinterpret_cast<const uint8_t*>(fingerprint->digest.data()),
|
|
fingerprint->digest.size()));
|
|
delete fingerprint;
|
|
}
|
|
|
|
class DtlsTestClient : public sigslot::has_slots<> {
|
|
public:
|
|
explicit DtlsTestClient(const std::string& name) : name_(name) {}
|
|
void CreateCertificate(rtc::KeyType key_type) {
|
|
certificate_ =
|
|
rtc::RTCCertificate::Create(std::unique_ptr<rtc::SSLIdentity>(
|
|
rtc::SSLIdentity::Generate(name_, key_type)));
|
|
}
|
|
const rtc::scoped_refptr<rtc::RTCCertificate>& certificate() {
|
|
return certificate_;
|
|
}
|
|
void SetupMaxProtocolVersion(rtc::SSLProtocolVersion version) {
|
|
ssl_max_version_ = version;
|
|
}
|
|
// Set up fake ICE transport and real DTLS transport under test.
|
|
void SetupTransports(IceRole role, int async_delay_ms = 0) {
|
|
fake_ice_transport_.reset(new FakeIceTransport("fake", 0));
|
|
fake_ice_transport_->SetAsync(true);
|
|
fake_ice_transport_->SetAsyncDelay(async_delay_ms);
|
|
fake_ice_transport_->SetIceRole(role);
|
|
fake_ice_transport_->SetIceTiebreaker((role == ICEROLE_CONTROLLING) ? 1
|
|
: 2);
|
|
// Hook the raw packets so that we can verify they are encrypted.
|
|
fake_ice_transport_->SignalReadPacket.connect(
|
|
this, &DtlsTestClient::OnFakeIceTransportReadPacket);
|
|
|
|
dtls_transport_.reset(
|
|
new DtlsTransport(fake_ice_transport_.get(), rtc::CryptoOptions()));
|
|
dtls_transport_->SetSslMaxProtocolVersion(ssl_max_version_);
|
|
// Note: Certificate may be null here if testing passthrough.
|
|
dtls_transport_->SetLocalCertificate(certificate_);
|
|
dtls_transport_->SignalWritableState.connect(
|
|
this, &DtlsTestClient::OnTransportWritableState);
|
|
dtls_transport_->SignalReadPacket.connect(
|
|
this, &DtlsTestClient::OnTransportReadPacket);
|
|
dtls_transport_->SignalSentPacket.connect(
|
|
this, &DtlsTestClient::OnTransportSentPacket);
|
|
}
|
|
|
|
FakeIceTransport* fake_ice_transport() { return fake_ice_transport_.get(); }
|
|
|
|
DtlsTransport* dtls_transport() { return dtls_transport_.get(); }
|
|
|
|
// Simulate fake ICE transports connecting.
|
|
bool Connect(DtlsTestClient* peer, bool asymmetric) {
|
|
fake_ice_transport_->SetDestination(peer->fake_ice_transport(), asymmetric);
|
|
return true;
|
|
}
|
|
|
|
int received_dtls_client_hellos() const {
|
|
return received_dtls_client_hellos_;
|
|
}
|
|
|
|
int received_dtls_server_hellos() const {
|
|
return received_dtls_server_hellos_;
|
|
}
|
|
|
|
void CheckRole(rtc::SSLRole role) {
|
|
if (role == rtc::SSL_CLIENT) {
|
|
ASSERT_EQ(0, received_dtls_client_hellos_);
|
|
ASSERT_GT(received_dtls_server_hellos_, 0);
|
|
} else {
|
|
ASSERT_GT(received_dtls_client_hellos_, 0);
|
|
ASSERT_EQ(0, received_dtls_server_hellos_);
|
|
}
|
|
}
|
|
|
|
void CheckSrtp(int expected_crypto_suite) {
|
|
int crypto_suite;
|
|
bool rv = dtls_transport_->GetSrtpCryptoSuite(&crypto_suite);
|
|
if (dtls_transport_->IsDtlsActive() && expected_crypto_suite) {
|
|
ASSERT_TRUE(rv);
|
|
ASSERT_EQ(crypto_suite, expected_crypto_suite);
|
|
} else {
|
|
ASSERT_FALSE(rv);
|
|
}
|
|
}
|
|
|
|
void CheckSsl() {
|
|
int cipher;
|
|
bool rv = dtls_transport_->GetSslCipherSuite(&cipher);
|
|
if (dtls_transport_->IsDtlsActive()) {
|
|
ASSERT_TRUE(rv);
|
|
EXPECT_TRUE(
|
|
rtc::SSLStreamAdapter::IsAcceptableCipher(cipher, rtc::KT_DEFAULT));
|
|
} else {
|
|
ASSERT_FALSE(rv);
|
|
}
|
|
}
|
|
|
|
void SendPackets(size_t size, size_t count, bool srtp) {
|
|
std::unique_ptr<char[]> packet(new char[size]);
|
|
size_t sent = 0;
|
|
do {
|
|
// Fill the packet with a known value and a sequence number to check
|
|
// against, and make sure that it doesn't look like DTLS.
|
|
memset(packet.get(), sent & 0xff, size);
|
|
packet[0] = (srtp) ? 0x80 : 0x00;
|
|
rtc::SetBE32(packet.get() + kPacketNumOffset,
|
|
static_cast<uint32_t>(sent));
|
|
|
|
// Only set the bypass flag if we've activated DTLS.
|
|
int flags = (certificate_ && srtp) ? PF_SRTP_BYPASS : 0;
|
|
rtc::PacketOptions packet_options;
|
|
packet_options.packet_id = kFakePacketId;
|
|
int rv = dtls_transport_->SendPacket(packet.get(), size, packet_options,
|
|
flags);
|
|
ASSERT_GT(rv, 0);
|
|
ASSERT_EQ(size, static_cast<size_t>(rv));
|
|
++sent;
|
|
} while (sent < count);
|
|
}
|
|
|
|
int SendInvalidSrtpPacket(size_t size) {
|
|
std::unique_ptr<char[]> packet(new char[size]);
|
|
// Fill the packet with 0 to form an invalid SRTP packet.
|
|
memset(packet.get(), 0, size);
|
|
|
|
rtc::PacketOptions packet_options;
|
|
return dtls_transport_->SendPacket(packet.get(), size, packet_options,
|
|
PF_SRTP_BYPASS);
|
|
}
|
|
|
|
void ExpectPackets(size_t size) {
|
|
packet_size_ = size;
|
|
received_.clear();
|
|
}
|
|
|
|
size_t NumPacketsReceived() { return received_.size(); }
|
|
|
|
// Inverse of SendPackets.
|
|
bool VerifyPacket(const char* data, size_t size, uint32_t* out_num) {
|
|
if (size != packet_size_ ||
|
|
(data[0] != 0 && static_cast<uint8_t>(data[0]) != 0x80)) {
|
|
return false;
|
|
}
|
|
uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset);
|
|
for (size_t i = kPacketHeaderLen; i < size; ++i) {
|
|
if (static_cast<uint8_t>(data[i]) != (packet_num & 0xff)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (out_num) {
|
|
*out_num = packet_num;
|
|
}
|
|
return true;
|
|
}
|
|
bool VerifyEncryptedPacket(const char* data, size_t size) {
|
|
// This is an encrypted data packet; let's make sure it's mostly random;
|
|
// less than 10% of the bytes should be equal to the cleartext packet.
|
|
if (size <= packet_size_) {
|
|
return false;
|
|
}
|
|
uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset);
|
|
int num_matches = 0;
|
|
for (size_t i = kPacketNumOffset; i < size; ++i) {
|
|
if (static_cast<uint8_t>(data[i]) == (packet_num & 0xff)) {
|
|
++num_matches;
|
|
}
|
|
}
|
|
return (num_matches < ((static_cast<int>(size) - 5) / 10));
|
|
}
|
|
|
|
// Transport callbacks
|
|
void OnTransportWritableState(rtc::PacketTransportInternal* transport) {
|
|
RTC_LOG(LS_INFO) << name_ << ": Transport '" << transport->transport_name()
|
|
<< "' is writable";
|
|
}
|
|
|
|
void OnTransportReadPacket(rtc::PacketTransportInternal* transport,
|
|
const char* data,
|
|
size_t size,
|
|
const rtc::PacketTime& packet_time,
|
|
int flags) {
|
|
uint32_t packet_num = 0;
|
|
ASSERT_TRUE(VerifyPacket(data, size, &packet_num));
|
|
received_.insert(packet_num);
|
|
// Only DTLS-SRTP packets should have the bypass flag set.
|
|
int expected_flags =
|
|
(certificate_ && IsRtpLeadByte(data[0])) ? PF_SRTP_BYPASS : 0;
|
|
ASSERT_EQ(expected_flags, flags);
|
|
}
|
|
|
|
void OnTransportSentPacket(rtc::PacketTransportInternal* transport,
|
|
const rtc::SentPacket& sent_packet) {
|
|
sent_packet_ = sent_packet;
|
|
}
|
|
|
|
rtc::SentPacket sent_packet() const { return sent_packet_; }
|
|
|
|
// Hook into the raw packet stream to make sure DTLS packets are encrypted.
|
|
void OnFakeIceTransportReadPacket(rtc::PacketTransportInternal* transport,
|
|
const char* data,
|
|
size_t size,
|
|
const rtc::PacketTime& time,
|
|
int flags) {
|
|
// Flags shouldn't be set on the underlying TransportChannel packets.
|
|
ASSERT_EQ(0, flags);
|
|
|
|
// Look at the handshake packets to see what role we played.
|
|
// Check that non-handshake packets are DTLS data or SRTP bypass.
|
|
if (data[0] == 22 && size > 17) {
|
|
if (data[13] == 1) {
|
|
++received_dtls_client_hellos_;
|
|
} else if (data[13] == 2) {
|
|
++received_dtls_server_hellos_;
|
|
}
|
|
} else if (dtls_transport_->IsDtlsActive() &&
|
|
!(data[0] >= 20 && data[0] <= 22)) {
|
|
ASSERT_TRUE(data[0] == 23 || IsRtpLeadByte(data[0]));
|
|
if (data[0] == 23) {
|
|
ASSERT_TRUE(VerifyEncryptedPacket(data, size));
|
|
} else if (IsRtpLeadByte(data[0])) {
|
|
ASSERT_TRUE(VerifyPacket(data, size, NULL));
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::string name_;
|
|
rtc::scoped_refptr<rtc::RTCCertificate> certificate_;
|
|
std::unique_ptr<FakeIceTransport> fake_ice_transport_;
|
|
std::unique_ptr<DtlsTransport> dtls_transport_;
|
|
size_t packet_size_ = 0u;
|
|
std::set<int> received_;
|
|
rtc::SSLProtocolVersion ssl_max_version_ = rtc::SSL_PROTOCOL_DTLS_12;
|
|
int received_dtls_client_hellos_ = 0;
|
|
int received_dtls_server_hellos_ = 0;
|
|
rtc::SentPacket sent_packet_;
|
|
};
|
|
|
|
// Base class for DtlsTransportChannelTest and DtlsEventOrderingTest, which
|
|
// inherit from different variants of testing::Test.
|
|
//
|
|
// Note that this test always uses a FakeClock, due to the |fake_clock_| member
|
|
// variable.
|
|
class DtlsTransportChannelTestBase {
|
|
public:
|
|
DtlsTransportChannelTestBase()
|
|
: client1_("P1"), client2_("P2"), use_dtls_(false) {}
|
|
|
|
void SetMaxProtocolVersions(rtc::SSLProtocolVersion c1,
|
|
rtc::SSLProtocolVersion c2) {
|
|
client1_.SetupMaxProtocolVersion(c1);
|
|
client2_.SetupMaxProtocolVersion(c2);
|
|
}
|
|
// If not called, DtlsTransport will be used in SRTP bypass mode.
|
|
void PrepareDtls(rtc::KeyType key_type) {
|
|
client1_.CreateCertificate(key_type);
|
|
client2_.CreateCertificate(key_type);
|
|
use_dtls_ = true;
|
|
}
|
|
|
|
// This test negotiates DTLS parameters before the underlying transports are
|
|
// writable. DtlsEventOrderingTest is responsible for exercising differerent
|
|
// orderings.
|
|
bool Connect(bool client1_server = true) {
|
|
Negotiate(client1_server);
|
|
EXPECT_TRUE(client1_.Connect(&client2_, false));
|
|
|
|
EXPECT_TRUE_SIMULATED_WAIT(client1_.dtls_transport()->writable() &&
|
|
client2_.dtls_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
if (!client1_.dtls_transport()->writable() ||
|
|
!client2_.dtls_transport()->writable())
|
|
return false;
|
|
|
|
// Check that we used the right roles.
|
|
if (use_dtls_) {
|
|
client1_.CheckRole(client1_server ? rtc::SSL_SERVER : rtc::SSL_CLIENT);
|
|
client2_.CheckRole(client1_server ? rtc::SSL_CLIENT : rtc::SSL_SERVER);
|
|
}
|
|
|
|
if (use_dtls_) {
|
|
// Check that we negotiated the right ciphers. Since GCM ciphers are not
|
|
// negotiated by default, we should end up with SRTP_AES128_CM_SHA1_32.
|
|
client1_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_32);
|
|
client2_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_32);
|
|
} else {
|
|
// If DTLS isn't actually being used, GetSrtpCryptoSuite should return
|
|
// false.
|
|
client1_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE);
|
|
client2_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE);
|
|
}
|
|
|
|
client1_.CheckSsl();
|
|
client2_.CheckSsl();
|
|
|
|
return true;
|
|
}
|
|
|
|
void Negotiate(bool client1_server = true) {
|
|
client1_.SetupTransports(ICEROLE_CONTROLLING);
|
|
client2_.SetupTransports(ICEROLE_CONTROLLED);
|
|
client1_.dtls_transport()->SetSslRole(client1_server ? rtc::SSL_SERVER
|
|
: rtc::SSL_CLIENT);
|
|
client2_.dtls_transport()->SetSslRole(client1_server ? rtc::SSL_CLIENT
|
|
: rtc::SSL_SERVER);
|
|
if (client2_.certificate()) {
|
|
SetRemoteFingerprintFromCert(client1_.dtls_transport(),
|
|
client2_.certificate());
|
|
}
|
|
if (client1_.certificate()) {
|
|
SetRemoteFingerprintFromCert(client2_.dtls_transport(),
|
|
client1_.certificate());
|
|
}
|
|
}
|
|
|
|
void TestTransfer(size_t size, size_t count, bool srtp) {
|
|
RTC_LOG(LS_INFO) << "Expect packets, size=" << size;
|
|
client2_.ExpectPackets(size);
|
|
client1_.SendPackets(size, count, srtp);
|
|
EXPECT_EQ_SIMULATED_WAIT(count, client2_.NumPacketsReceived(), kTimeout,
|
|
fake_clock_);
|
|
}
|
|
|
|
protected:
|
|
rtc::ScopedFakeClock fake_clock_;
|
|
DtlsTestClient client1_;
|
|
DtlsTestClient client2_;
|
|
int channel_ct_;
|
|
bool use_dtls_;
|
|
rtc::SSLProtocolVersion ssl_expected_version_;
|
|
};
|
|
|
|
class DtlsTransportChannelTest : public DtlsTransportChannelTestBase,
|
|
public ::testing::Test {};
|
|
|
|
// Connect without DTLS, and transfer RTP data.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferRtp) {
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/false);
|
|
}
|
|
|
|
// Test that the SignalSentPacket signal is wired up.
|
|
TEST_F(DtlsTransportChannelTest, TestSignalSentPacket) {
|
|
ASSERT_TRUE(Connect());
|
|
// Sanity check default value (-1).
|
|
ASSERT_EQ(client1_.sent_packet().send_time_ms, -1);
|
|
TestTransfer(1000, 100, false);
|
|
// Check that we get the expected fake packet ID, and a time of 0 from the
|
|
// fake clock.
|
|
EXPECT_EQ(kFakePacketId, client1_.sent_packet().packet_id);
|
|
EXPECT_GE(client1_.sent_packet().send_time_ms, 0);
|
|
}
|
|
|
|
// Connect without DTLS, and transfer SRTP data.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferSrtp) {
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Connect with DTLS, and transfer data over DTLS.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferDtls) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/false);
|
|
}
|
|
|
|
// Connect with DTLS, combine multiple DTLS records into one packet.
|
|
// Our DTLS implementation doesn't do this, but other implementations may;
|
|
// see https://tools.ietf.org/html/rfc6347#section-4.1.1.
|
|
// This has caused interoperability problems with ORTCLib in the past.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferDtlsCombineRecords) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
// Our DTLS implementation always sends one record per packet, so to simulate
|
|
// an endpoint that sends multiple records per packet, we configure the fake
|
|
// ICE transport to combine every two consecutive packets into a single
|
|
// packet.
|
|
FakeIceTransport* transport = client1_.fake_ice_transport();
|
|
transport->combine_outgoing_packets(true);
|
|
TestTransfer(500, 100, /*srtp=*/false);
|
|
}
|
|
|
|
class DtlsTransportChannelVersionTest
|
|
: public DtlsTransportChannelTestBase,
|
|
public ::testing::TestWithParam<
|
|
::testing::tuple<rtc::SSLProtocolVersion, rtc::SSLProtocolVersion>> {
|
|
};
|
|
|
|
// Test that an acceptable cipher suite is negotiated when different versions
|
|
// of DTLS are supported. Note that it's IsAcceptableCipher that does the actual
|
|
// work.
|
|
TEST_P(DtlsTransportChannelVersionTest, TestCipherSuiteNegotiation) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
SetMaxProtocolVersions(::testing::get<0>(GetParam()),
|
|
::testing::get<1>(GetParam()));
|
|
ASSERT_TRUE(Connect());
|
|
}
|
|
|
|
// Will test every combination of 1.0/1.2 on the client and server.
|
|
INSTANTIATE_TEST_CASE_P(
|
|
TestCipherSuiteNegotiation,
|
|
DtlsTransportChannelVersionTest,
|
|
::testing::Combine(::testing::Values(rtc::SSL_PROTOCOL_DTLS_10,
|
|
rtc::SSL_PROTOCOL_DTLS_12),
|
|
::testing::Values(rtc::SSL_PROTOCOL_DTLS_10,
|
|
rtc::SSL_PROTOCOL_DTLS_12)));
|
|
|
|
// Connect with DTLS, negotiating DTLS-SRTP, and transfer SRTP using bypass.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtp) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Connect with DTLS-SRTP, transfer an invalid SRTP packet, and expects -1
|
|
// returned.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferDtlsInvalidSrtpPacket) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
EXPECT_EQ(-1, client1_.SendInvalidSrtpPacket(100));
|
|
}
|
|
|
|
// Create a single channel with DTLS, and send normal data and SRTP data on it.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpDemux) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/false);
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Test transferring when the "answerer" has the server role.
|
|
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpAnswererIsPassive) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect(/*client1_server=*/false));
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Test that renegotiation (setting same role and fingerprint again) can be
|
|
// started before the clients become connected in the first negotiation.
|
|
TEST_F(DtlsTransportChannelTest, TestRenegotiateBeforeConnect) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
// Note: This is doing the same thing Connect normally does, minus some
|
|
// additional checks not relevant for this test.
|
|
Negotiate();
|
|
Negotiate();
|
|
EXPECT_TRUE(client1_.Connect(&client2_, false));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client1_.dtls_transport()->writable() &&
|
|
client2_.dtls_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
TestTransfer(1000, 100, true);
|
|
}
|
|
|
|
// Test Certificates state after negotiation but before connection.
|
|
TEST_F(DtlsTransportChannelTest, TestCertificatesBeforeConnect) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
Negotiate();
|
|
|
|
// After negotiation, each side has a distinct local certificate, but still no
|
|
// remote certificate, because connection has not yet occurred.
|
|
auto certificate1 = client1_.dtls_transport()->GetLocalCertificate();
|
|
auto certificate2 = client2_.dtls_transport()->GetLocalCertificate();
|
|
ASSERT_NE(certificate1->ssl_certificate().ToPEMString(),
|
|
certificate2->ssl_certificate().ToPEMString());
|
|
ASSERT_FALSE(client1_.dtls_transport()->GetRemoteSSLCertificate());
|
|
ASSERT_FALSE(client2_.dtls_transport()->GetRemoteSSLCertificate());
|
|
}
|
|
|
|
// Test Certificates state after connection.
|
|
TEST_F(DtlsTransportChannelTest, TestCertificatesAfterConnect) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
|
|
// After connection, each side has a distinct local certificate.
|
|
auto certificate1 = client1_.dtls_transport()->GetLocalCertificate();
|
|
auto certificate2 = client2_.dtls_transport()->GetLocalCertificate();
|
|
ASSERT_NE(certificate1->ssl_certificate().ToPEMString(),
|
|
certificate2->ssl_certificate().ToPEMString());
|
|
|
|
// Each side's remote certificate is the other side's local certificate.
|
|
std::unique_ptr<rtc::SSLCertificate> remote_cert1 =
|
|
client1_.dtls_transport()->GetRemoteSSLCertificate();
|
|
ASSERT_TRUE(remote_cert1);
|
|
ASSERT_EQ(remote_cert1->ToPEMString(),
|
|
certificate2->ssl_certificate().ToPEMString());
|
|
std::unique_ptr<rtc::SSLCertificate> remote_cert2 =
|
|
client2_.dtls_transport()->GetRemoteSSLCertificate();
|
|
ASSERT_TRUE(remote_cert2);
|
|
ASSERT_EQ(remote_cert2->ToPEMString(),
|
|
certificate1->ssl_certificate().ToPEMString());
|
|
}
|
|
|
|
// Test that packets are retransmitted according to the expected schedule.
|
|
// Each time a timeout occurs, the retransmission timer should be doubled up to
|
|
// 60 seconds. The timer defaults to 1 second, but for WebRTC we should be
|
|
// initializing it to 50ms.
|
|
TEST_F(DtlsTransportChannelTest, TestRetransmissionSchedule) {
|
|
// We can only change the retransmission schedule with a recently-added
|
|
// BoringSSL API. Skip the test if not built with BoringSSL.
|
|
MAYBE_SKIP_TEST(IsBoringSsl);
|
|
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
// Exchange fingerprints and set SSL roles.
|
|
Negotiate();
|
|
|
|
// Make client2_ writable, but not client1_.
|
|
// This means client1_ will send DTLS client hellos but get no response.
|
|
EXPECT_TRUE(client2_.Connect(&client1_, true));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client2_.fake_ice_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
|
|
// Wait for the first client hello to be sent.
|
|
EXPECT_EQ_WAIT(1, client1_.received_dtls_client_hellos(), kTimeout);
|
|
EXPECT_FALSE(client1_.fake_ice_transport()->writable());
|
|
|
|
static int timeout_schedule_ms[] = {50, 100, 200, 400, 800, 1600,
|
|
3200, 6400, 12800, 25600, 51200, 60000};
|
|
|
|
int expected_hellos = 1;
|
|
for (size_t i = 0;
|
|
i < (sizeof(timeout_schedule_ms) / sizeof(timeout_schedule_ms[0]));
|
|
++i) {
|
|
// For each expected retransmission time, advance the fake clock a
|
|
// millisecond before the expected time and verify that no unexpected
|
|
// retransmissions were sent. Then advance it the final millisecond and
|
|
// verify that the expected retransmission was sent.
|
|
fake_clock_.AdvanceTime(
|
|
rtc::TimeDelta::FromMilliseconds(timeout_schedule_ms[i] - 1));
|
|
EXPECT_EQ(expected_hellos, client1_.received_dtls_client_hellos());
|
|
fake_clock_.AdvanceTime(rtc::TimeDelta::FromMilliseconds(1));
|
|
EXPECT_EQ(++expected_hellos, client1_.received_dtls_client_hellos());
|
|
}
|
|
}
|
|
|
|
// The following events can occur in many different orders:
|
|
// 1. Caller receives remote fingerprint.
|
|
// 2. Caller is writable.
|
|
// 3. Caller receives ClientHello.
|
|
// 4. DTLS handshake finishes.
|
|
//
|
|
// The tests below cover all causally consistent permutations of these events;
|
|
// the caller must be writable and receive a ClientHello before the handshake
|
|
// finishes, but otherwise any ordering is possible.
|
|
//
|
|
// For each permutation, the test verifies that a connection is established and
|
|
// fingerprint verified without any DTLS packet needing to be retransmitted.
|
|
//
|
|
// Each permutation is also tested with valid and invalid fingerprints,
|
|
// ensuring that the handshake fails with an invalid fingerprint.
|
|
enum DtlsTransportEvent {
|
|
CALLER_RECEIVES_FINGERPRINT,
|
|
CALLER_WRITABLE,
|
|
CALLER_RECEIVES_CLIENTHELLO,
|
|
HANDSHAKE_FINISHES
|
|
};
|
|
|
|
class DtlsEventOrderingTest
|
|
: public DtlsTransportChannelTestBase,
|
|
public ::testing::TestWithParam<
|
|
::testing::tuple<std::vector<DtlsTransportEvent>, bool>> {
|
|
protected:
|
|
// If |valid_fingerprint| is false, the caller will receive a fingerprint
|
|
// that doesn't match the callee's certificate, so the handshake should fail.
|
|
void TestEventOrdering(const std::vector<DtlsTransportEvent>& events,
|
|
bool valid_fingerprint) {
|
|
// Pre-setup: Set local certificate on both caller and callee, and
|
|
// remote fingerprint on callee, but neither is writable and the caller
|
|
// doesn't have the callee's fingerprint.
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
// Simulate packets being sent and arriving asynchronously.
|
|
// Otherwise the entire DTLS handshake would occur in one clock tick, and
|
|
// we couldn't inject method calls in the middle of it.
|
|
int simulated_delay_ms = 10;
|
|
client1_.SetupTransports(ICEROLE_CONTROLLING, simulated_delay_ms);
|
|
client2_.SetupTransports(ICEROLE_CONTROLLED, simulated_delay_ms);
|
|
// Similar to how NegotiateOrdering works.
|
|
client1_.dtls_transport()->SetSslRole(rtc::SSL_SERVER);
|
|
client2_.dtls_transport()->SetSslRole(rtc::SSL_CLIENT);
|
|
SetRemoteFingerprintFromCert(client2_.dtls_transport(),
|
|
client1_.certificate());
|
|
|
|
for (DtlsTransportEvent e : events) {
|
|
switch (e) {
|
|
case CALLER_RECEIVES_FINGERPRINT:
|
|
if (valid_fingerprint) {
|
|
SetRemoteFingerprintFromCert(client1_.dtls_transport(),
|
|
client2_.certificate());
|
|
} else {
|
|
SetRemoteFingerprintFromCert(client1_.dtls_transport(),
|
|
client2_.certificate(),
|
|
true /*modify_digest*/);
|
|
}
|
|
break;
|
|
case CALLER_WRITABLE:
|
|
EXPECT_TRUE(client1_.Connect(&client2_, true));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client1_.fake_ice_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
break;
|
|
case CALLER_RECEIVES_CLIENTHELLO:
|
|
// Sanity check that a ClientHello hasn't already been received.
|
|
EXPECT_EQ(0, client1_.received_dtls_client_hellos());
|
|
// Making client2_ writable will cause it to send the ClientHello.
|
|
EXPECT_TRUE(client2_.Connect(&client1_, true));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client2_.fake_ice_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
EXPECT_EQ_SIMULATED_WAIT(1, client1_.received_dtls_client_hellos(),
|
|
kTimeout, fake_clock_);
|
|
break;
|
|
case HANDSHAKE_FINISHES:
|
|
// Sanity check that the handshake hasn't already finished.
|
|
EXPECT_FALSE(client1_.dtls_transport()->IsDtlsConnected() ||
|
|
client1_.dtls_transport()->dtls_state() ==
|
|
DTLS_TRANSPORT_FAILED);
|
|
EXPECT_TRUE_SIMULATED_WAIT(
|
|
client1_.dtls_transport()->IsDtlsConnected() ||
|
|
client1_.dtls_transport()->dtls_state() ==
|
|
DTLS_TRANSPORT_FAILED,
|
|
kTimeout, fake_clock_);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DtlsTransportState expected_final_state =
|
|
valid_fingerprint ? DTLS_TRANSPORT_CONNECTED : DTLS_TRANSPORT_FAILED;
|
|
EXPECT_EQ_SIMULATED_WAIT(expected_final_state,
|
|
client1_.dtls_transport()->dtls_state(), kTimeout,
|
|
fake_clock_);
|
|
EXPECT_EQ_SIMULATED_WAIT(expected_final_state,
|
|
client2_.dtls_transport()->dtls_state(), kTimeout,
|
|
fake_clock_);
|
|
|
|
// Channel should be writable iff there was a valid fingerprint.
|
|
EXPECT_EQ(valid_fingerprint, client1_.dtls_transport()->writable());
|
|
EXPECT_EQ(valid_fingerprint, client2_.dtls_transport()->writable());
|
|
|
|
// Check that no hello needed to be retransmitted.
|
|
EXPECT_EQ(1, client1_.received_dtls_client_hellos());
|
|
EXPECT_EQ(1, client2_.received_dtls_server_hellos());
|
|
|
|
if (valid_fingerprint) {
|
|
TestTransfer(1000, 100, false);
|
|
}
|
|
}
|
|
};
|
|
|
|
TEST_P(DtlsEventOrderingTest, TestEventOrdering) {
|
|
TestEventOrdering(::testing::get<0>(GetParam()),
|
|
::testing::get<1>(GetParam()));
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
TestEventOrdering,
|
|
DtlsEventOrderingTest,
|
|
::testing::Combine(
|
|
::testing::Values(
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_FINGERPRINT, CALLER_WRITABLE,
|
|
CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_WRITABLE, CALLER_RECEIVES_FINGERPRINT,
|
|
CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO,
|
|
CALLER_RECEIVES_FINGERPRINT, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO,
|
|
HANDSHAKE_FINISHES, CALLER_RECEIVES_FINGERPRINT},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_FINGERPRINT, CALLER_RECEIVES_CLIENTHELLO,
|
|
CALLER_WRITABLE, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_CLIENTHELLO, CALLER_RECEIVES_FINGERPRINT,
|
|
CALLER_WRITABLE, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_CLIENTHELLO, CALLER_WRITABLE,
|
|
CALLER_RECEIVES_FINGERPRINT, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{CALLER_RECEIVES_CLIENTHELLO,
|
|
CALLER_WRITABLE, HANDSHAKE_FINISHES,
|
|
CALLER_RECEIVES_FINGERPRINT}),
|
|
::testing::Bool()));
|
|
|
|
} // namespace cricket
|