webrtc_m130/api/units/time_delta.h
Sebastian Jansson 8e06419ee9 Makes units constexpr when possible.
This makes the constructor and the unchecked create functions
constexpr on the unit classes Timestamp, TimeDelta, Datarate and
DataSize. This allows using the units in constexpr constants.
Unchecked access methods are made constexpr as well. Making them
usable in static asserts.

Constexpr create functions for checked construction is added in
a separate CL.

Bug: webrtc:9574
Change-Id: I605ae2e8572195dbb2078c283056208be0f43333
Reviewed-on: https://webrtc-review.googlesource.com/91160
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24206}
2018-08-07 11:30:21 +00:00

228 lines
8.0 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_UNITS_TIME_DELTA_H_
#define API_UNITS_TIME_DELTA_H_
#include <stdint.h>
#include <cmath>
#include <limits>
#include <string>
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace timedelta_impl {
constexpr int64_t kPlusInfinityVal = std::numeric_limits<int64_t>::max();
constexpr int64_t kMinusInfinityVal = std::numeric_limits<int64_t>::min();
} // namespace timedelta_impl
// TimeDelta represents the difference between two timestamps. Commonly this can
// be a duration. However since two Timestamps are not guaranteed to have the
// same epoch (they might come from different computers, making exact
// synchronisation infeasible), the duration covered by a TimeDelta can be
// undefined. To simplify usage, it can be constructed and converted to
// different units, specifically seconds (s), milliseconds (ms) and
// microseconds (us).
class TimeDelta {
public:
TimeDelta() = delete;
static constexpr TimeDelta Zero() { return TimeDelta(0); }
static constexpr TimeDelta PlusInfinity() {
return TimeDelta(timedelta_impl::kPlusInfinityVal);
}
static constexpr TimeDelta MinusInfinity() {
return TimeDelta(timedelta_impl::kMinusInfinityVal);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static TimeDelta seconds(T seconds) {
RTC_DCHECK_GT(seconds, timedelta_impl::kMinusInfinityVal / 1000000);
RTC_DCHECK_LT(seconds, timedelta_impl::kPlusInfinityVal / 1000000);
return TimeDelta(rtc::dchecked_cast<int64_t>(seconds) * 1000000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static TimeDelta ms(T milliseconds) {
RTC_DCHECK_GT(milliseconds, timedelta_impl::kMinusInfinityVal / 1000);
RTC_DCHECK_LT(milliseconds, timedelta_impl::kPlusInfinityVal / 1000);
return TimeDelta(rtc::dchecked_cast<int64_t>(milliseconds) * 1000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static TimeDelta us(T microseconds) {
RTC_DCHECK_GT(microseconds, timedelta_impl::kMinusInfinityVal);
RTC_DCHECK_LT(microseconds, timedelta_impl::kPlusInfinityVal);
return TimeDelta(rtc::dchecked_cast<int64_t>(microseconds));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static TimeDelta seconds(T seconds) {
return TimeDelta::us(seconds * 1e6);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static TimeDelta ms(T milliseconds) {
return TimeDelta::us(milliseconds * 1e3);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static TimeDelta us(T microseconds) {
if (microseconds == std::numeric_limits<T>::infinity()) {
return PlusInfinity();
} else if (microseconds == -std::numeric_limits<T>::infinity()) {
return MinusInfinity();
} else {
RTC_DCHECK(!std::isnan(microseconds));
RTC_DCHECK_GT(microseconds, timedelta_impl::kMinusInfinityVal);
RTC_DCHECK_LT(microseconds, timedelta_impl::kPlusInfinityVal);
return TimeDelta(rtc::dchecked_cast<int64_t>(microseconds));
}
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type seconds() const {
return rtc::dchecked_cast<T>((us() + (us() >= 0 ? 500000 : -500000)) /
1000000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type ms() const {
return rtc::dchecked_cast<T>((us() + (us() >= 0 ? 500 : -500)) / 1000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type us() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(microseconds_);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type ns() const {
RTC_DCHECK_GE(us(), std::numeric_limits<T>::min() / 1000);
RTC_DCHECK_LE(us(), std::numeric_limits<T>::max() / 1000);
return rtc::dchecked_cast<T>(us() * 1000);
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type seconds()
const {
return us<T>() * 1e-6;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type ms()
const {
return us<T>() * 1e-3;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type us()
const {
if (IsPlusInfinity()) {
return std::numeric_limits<T>::infinity();
} else if (IsMinusInfinity()) {
return -std::numeric_limits<T>::infinity();
} else {
return microseconds_;
}
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type ns()
const {
return us<T>() * 1e3;
}
TimeDelta Abs() const { return TimeDelta::us(std::abs(us())); }
constexpr bool IsZero() const { return microseconds_ == 0; }
constexpr bool IsFinite() const { return !IsInfinite(); }
constexpr bool IsInfinite() const {
return microseconds_ == timedelta_impl::kPlusInfinityVal ||
microseconds_ == timedelta_impl::kMinusInfinityVal;
}
constexpr bool IsPlusInfinity() const {
return microseconds_ == timedelta_impl::kPlusInfinityVal;
}
constexpr bool IsMinusInfinity() const {
return microseconds_ == timedelta_impl::kMinusInfinityVal;
}
TimeDelta operator+(const TimeDelta& other) const {
return TimeDelta::us(us() + other.us());
}
TimeDelta operator-(const TimeDelta& other) const {
return TimeDelta::us(us() - other.us());
}
TimeDelta& operator-=(const TimeDelta& other) {
microseconds_ -= other.us();
return *this;
}
TimeDelta& operator+=(const TimeDelta& other) {
microseconds_ += other.us();
return *this;
}
double operator/(const TimeDelta& other) const {
return us<double>() / other.us<double>();
}
bool operator==(const TimeDelta& other) const {
return microseconds_ == other.microseconds_;
}
bool operator!=(const TimeDelta& other) const {
return microseconds_ != other.microseconds_;
}
bool operator<=(const TimeDelta& other) const {
return microseconds_ <= other.microseconds_;
}
bool operator>=(const TimeDelta& other) const {
return microseconds_ >= other.microseconds_;
}
bool operator>(const TimeDelta& other) const {
return microseconds_ > other.microseconds_;
}
bool operator<(const TimeDelta& other) const {
return microseconds_ < other.microseconds_;
}
private:
explicit constexpr TimeDelta(int64_t us) : microseconds_(us) {}
int64_t microseconds_;
};
inline TimeDelta operator*(const TimeDelta& delta, const double& scalar) {
return TimeDelta::us(std::round(delta.us() * scalar));
}
inline TimeDelta operator*(const double& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator*(const TimeDelta& delta, const int64_t& scalar) {
return TimeDelta::us(delta.us() * scalar);
}
inline TimeDelta operator*(const int64_t& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator*(const TimeDelta& delta, const int32_t& scalar) {
return TimeDelta::us(delta.us() * scalar);
}
inline TimeDelta operator*(const int32_t& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator/(const TimeDelta& delta, const int64_t& scalar) {
return TimeDelta::us(delta.us() / scalar);
}
std::string ToString(const TimeDelta& value);
} // namespace webrtc
#endif // API_UNITS_TIME_DELTA_H_