Per Åhgren 1b4059e84f Transparency improvements for AEC3 during call start and after resets
This CL changes the AEC3 behavior to be more transparent when there 
is uncertainty about the amount of echo in the microphone signal.

Bug: webrtc:8398, chromium:774868
Change-Id: I88e681f8decd892f44397b753df371a1c4b90af0
Reviewed-on: https://webrtc-review.googlesource.com/10801
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#20319}
2017-10-17 06:00:50 +00:00

132 lines
4.5 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <numeric>
#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/safe_minmax.h"
namespace webrtc {
namespace {
void PredictionError(const Aec3Fft& fft,
const FftData& S,
rtc::ArrayView<const float> y,
std::array<float, kBlockSize>* e,
FftData* E,
std::array<float, kBlockSize>* s) {
std::array<float, kFftLength> s_scratch;
fft.Ifft(S, &s_scratch);
constexpr float kScale = 1.0f / kFftLengthBy2;
std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2,
e->begin(), [&](float a, float b) { return a - b * kScale; });
std::for_each(e->begin(), e->end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
fft.ZeroPaddedFft(*e, E);
if (s) {
for (size_t k = 0; k < s->size(); ++k) {
(*s)[k] = kScale * s_scratch[k + kFftLengthBy2];
}
}
}
} // namespace
Subtractor::Subtractor(ApmDataDumper* data_dumper,
Aec3Optimization optimization)
: fft_(),
data_dumper_(data_dumper),
optimization_(optimization),
main_filter_(kAdaptiveFilterLength, optimization, data_dumper_),
shadow_filter_(kAdaptiveFilterLength, optimization, data_dumper_) {
RTC_DCHECK(data_dumper_);
}
Subtractor::~Subtractor() = default;
void Subtractor::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
if (echo_path_variability.delay_change) {
main_filter_.HandleEchoPathChange();
shadow_filter_.HandleEchoPathChange();
G_main_.HandleEchoPathChange();
G_shadow_.HandleEchoPathChange();
converged_filter_ = false;
}
}
void Subtractor::Process(const RenderBuffer& render_buffer,
const rtc::ArrayView<const float> capture,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
SubtractorOutput* output) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
rtc::ArrayView<const float> y = capture;
FftData& E_main = output->E_main;
FftData E_shadow;
std::array<float, kBlockSize>& e_main = output->e_main;
std::array<float, kBlockSize>& e_shadow = output->e_shadow;
FftData S;
FftData& G = S;
// Form the output of the main filter.
main_filter_.Filter(render_buffer, &S);
PredictionError(fft_, S, y, &e_main, &E_main, &output->s_main);
// Form the output of the shadow filter.
shadow_filter_.Filter(render_buffer, &S);
PredictionError(fft_, S, y, &e_shadow, &E_shadow, nullptr);
if (!converged_filter_) {
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
const float e2_main =
std::accumulate(e_main.begin(), e_main.end(), 0.f, sum_of_squares);
const float e2_shadow =
std::accumulate(e_shadow.begin(), e_shadow.end(), 0.f, sum_of_squares);
const float y2 = std::accumulate(y.begin(), y.end(), 0.f, sum_of_squares);
if (y2 > kBlockSize * 50.f * 50.f) {
converged_filter_ = (e2_main > 0.3 * y2 || e2_shadow > 0.1 * y2);
}
}
// Compute spectra for future use.
E_main.Spectrum(optimization_, &output->E2_main);
E_shadow.Spectrum(optimization_, &output->E2_shadow);
// Update the main filter.
G_main_.Compute(render_buffer, render_signal_analyzer, *output, main_filter_,
aec_state.SaturatedCapture(), &G);
main_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im);
// Update the shadow filter.
G_shadow_.Compute(render_buffer, render_signal_analyzer, E_shadow,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture(), &G);
shadow_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im);
main_filter_.DumpFilter("aec3_subtractor_H_main");
shadow_filter_.DumpFilter("aec3_subtractor_H_shadow");
}
} // namespace webrtc