webrtc_m130/video/stats_counter.cc
Jonas Olsson 84df1c724e Make fewer copies when using StringBuilder.
Replace calls to .str() which copies with .Release which moves in cases where that's safe.

This CL was generated by this command:
git grep -l 'StringBuilder' |
xargs perl -i -0 -pe "s/(rtc::StringBuilder (\S+);.*?return )\\g2.str\(\)/\$1\$2.Release\(\)/sg"

Bug: webrtc:8982
Change-Id: If4dadbeb039df010aaaa9e58da81c1971a84fe8f
Reviewed-on: https://webrtc-review.googlesource.com/100307
Commit-Queue: Jonas Olsson <jonasolsson@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24790}
2018-09-24 09:39:19 +00:00

464 lines
12 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/stats_counter.h"
#include <algorithm>
#include <limits>
#include <map>
#include "rtc_base/checks.h"
#include "rtc_base/strings/string_builder.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
// Default periodic time interval for processing samples.
const int64_t kDefaultProcessIntervalMs = 2000;
const uint32_t kStreamId0 = 0;
} // namespace
std::string AggregatedStats::ToString() const {
return ToStringWithMultiplier(1);
}
std::string AggregatedStats::ToStringWithMultiplier(int multiplier) const {
rtc::StringBuilder ss;
ss << "periodic_samples:" << num_samples << ", {";
ss << "min:" << (min * multiplier) << ", ";
ss << "avg:" << (average * multiplier) << ", ";
ss << "max:" << (max * multiplier) << "}";
return ss.Release();
}
// Class holding periodically computed metrics.
class AggregatedCounter {
public:
AggregatedCounter() : last_sample_(0), sum_samples_(0) {}
~AggregatedCounter() {}
void Add(int sample) {
last_sample_ = sample;
sum_samples_ += sample;
++stats_.num_samples;
if (stats_.num_samples == 1) {
stats_.min = sample;
stats_.max = sample;
}
stats_.min = std::min(sample, stats_.min);
stats_.max = std::max(sample, stats_.max);
}
AggregatedStats ComputeStats() {
Compute();
return stats_;
}
bool Empty() const { return stats_.num_samples == 0; }
int last_sample() const { return last_sample_; }
private:
void Compute() {
if (stats_.num_samples == 0)
return;
stats_.average =
(sum_samples_ + stats_.num_samples / 2) / stats_.num_samples;
}
int last_sample_;
int64_t sum_samples_;
AggregatedStats stats_;
};
// Class holding gathered samples within a process interval.
class Samples {
public:
Samples() : total_count_(0) {}
~Samples() {}
void Add(int sample, uint32_t stream_id) {
samples_[stream_id].Add(sample);
++total_count_;
}
void Set(int64_t sample, uint32_t stream_id) {
samples_[stream_id].Set(sample);
++total_count_;
}
void SetLast(int64_t sample, uint32_t stream_id) {
samples_[stream_id].SetLast(sample);
}
int64_t GetLast(uint32_t stream_id) { return samples_[stream_id].GetLast(); }
int64_t Count() const { return total_count_; }
bool Empty() const { return total_count_ == 0; }
int64_t Sum() const {
int64_t sum = 0;
for (const auto& it : samples_)
sum += it.second.sum_;
return sum;
}
int Max() const {
int max = std::numeric_limits<int>::min();
for (const auto& it : samples_)
max = std::max(it.second.max_, max);
return max;
}
void Reset() {
for (auto& it : samples_)
it.second.Reset();
total_count_ = 0;
}
int64_t Diff() const {
int64_t sum_diff = 0;
int count = 0;
for (const auto& it : samples_) {
if (it.second.count_ > 0) {
int64_t diff = it.second.sum_ - it.second.last_sum_;
if (diff >= 0) {
sum_diff += diff;
++count;
}
}
}
return (count > 0) ? sum_diff : -1;
}
private:
struct Stats {
void Add(int sample) {
sum_ += sample;
++count_;
max_ = std::max(sample, max_);
}
void Set(int64_t sample) {
sum_ = sample;
++count_;
}
void SetLast(int64_t sample) { last_sum_ = sample; }
int64_t GetLast() const { return last_sum_; }
void Reset() {
if (count_ > 0)
last_sum_ = sum_;
sum_ = 0;
count_ = 0;
max_ = std::numeric_limits<int>::min();
}
int max_ = std::numeric_limits<int>::min();
int64_t count_ = 0;
int64_t sum_ = 0;
int64_t last_sum_ = 0;
};
int64_t total_count_;
std::map<uint32_t, Stats> samples_; // Gathered samples mapped by stream id.
};
// StatsCounter class.
StatsCounter::StatsCounter(Clock* clock,
int64_t process_intervals_ms,
bool include_empty_intervals,
StatsCounterObserver* observer)
: include_empty_intervals_(include_empty_intervals),
process_intervals_ms_(process_intervals_ms),
aggregated_counter_(new AggregatedCounter()),
samples_(new Samples()),
clock_(clock),
observer_(observer),
last_process_time_ms_(-1),
paused_(false),
pause_time_ms_(-1),
min_pause_time_ms_(0) {
RTC_DCHECK_GT(process_intervals_ms_, 0);
}
StatsCounter::~StatsCounter() {}
AggregatedStats StatsCounter::GetStats() {
return aggregated_counter_->ComputeStats();
}
AggregatedStats StatsCounter::ProcessAndGetStats() {
if (HasSample())
TryProcess();
return aggregated_counter_->ComputeStats();
}
void StatsCounter::ProcessAndPauseForDuration(int64_t min_pause_time_ms) {
ProcessAndPause();
min_pause_time_ms_ = min_pause_time_ms;
}
void StatsCounter::ProcessAndPause() {
if (HasSample())
TryProcess();
paused_ = true;
pause_time_ms_ = clock_->TimeInMilliseconds();
}
void StatsCounter::ProcessAndStopPause() {
if (HasSample())
TryProcess();
Resume();
}
bool StatsCounter::HasSample() const {
return last_process_time_ms_ != -1;
}
bool StatsCounter::TimeToProcess(int* elapsed_intervals) {
int64_t now = clock_->TimeInMilliseconds();
if (last_process_time_ms_ == -1)
last_process_time_ms_ = now;
int64_t diff_ms = now - last_process_time_ms_;
if (diff_ms < process_intervals_ms_)
return false;
// Advance number of complete |process_intervals_ms_| that have passed.
int64_t num_intervals = diff_ms / process_intervals_ms_;
last_process_time_ms_ += num_intervals * process_intervals_ms_;
*elapsed_intervals = num_intervals;
return true;
}
void StatsCounter::Add(int sample) {
TryProcess();
samples_->Add(sample, kStreamId0);
ResumeIfMinTimePassed();
}
void StatsCounter::Set(int64_t sample, uint32_t stream_id) {
if (paused_ && sample == samples_->GetLast(stream_id)) {
// Do not add same sample while paused (will reset pause).
return;
}
TryProcess();
samples_->Set(sample, stream_id);
ResumeIfMinTimePassed();
}
void StatsCounter::SetLast(int64_t sample, uint32_t stream_id) {
RTC_DCHECK(!HasSample()) << "Should be set before first sample is added.";
samples_->SetLast(sample, stream_id);
}
// Reports periodically computed metric.
void StatsCounter::ReportMetricToAggregatedCounter(
int value,
int num_values_to_add) const {
for (int i = 0; i < num_values_to_add; ++i) {
aggregated_counter_->Add(value);
if (observer_)
observer_->OnMetricUpdated(value);
}
}
void StatsCounter::TryProcess() {
int elapsed_intervals;
if (!TimeToProcess(&elapsed_intervals))
return;
// Get and report periodically computed metric.
int metric;
if (GetMetric(&metric))
ReportMetricToAggregatedCounter(metric, 1);
// Report value for elapsed intervals without samples.
if (IncludeEmptyIntervals()) {
// If there are no samples, all elapsed intervals are empty (otherwise one
// interval contains sample(s), discard this interval).
int empty_intervals =
samples_->Empty() ? elapsed_intervals : (elapsed_intervals - 1);
ReportMetricToAggregatedCounter(GetValueForEmptyInterval(),
empty_intervals);
}
// Reset samples for elapsed interval.
samples_->Reset();
}
bool StatsCounter::IncludeEmptyIntervals() const {
return include_empty_intervals_ && !paused_ && !aggregated_counter_->Empty();
}
void StatsCounter::ResumeIfMinTimePassed() {
if (paused_ &&
(clock_->TimeInMilliseconds() - pause_time_ms_) >= min_pause_time_ms_) {
Resume();
}
}
void StatsCounter::Resume() {
paused_ = false;
min_pause_time_ms_ = 0;
}
// StatsCounter sub-classes.
AvgCounter::AvgCounter(Clock* clock,
StatsCounterObserver* observer,
bool include_empty_intervals)
: StatsCounter(clock,
kDefaultProcessIntervalMs,
include_empty_intervals,
observer) {}
void AvgCounter::Add(int sample) {
StatsCounter::Add(sample);
}
bool AvgCounter::GetMetric(int* metric) const {
int64_t count = samples_->Count();
if (count == 0)
return false;
*metric = (samples_->Sum() + count / 2) / count;
return true;
}
int AvgCounter::GetValueForEmptyInterval() const {
return aggregated_counter_->last_sample();
}
MaxCounter::MaxCounter(Clock* clock,
StatsCounterObserver* observer,
int64_t process_intervals_ms)
: StatsCounter(clock,
process_intervals_ms,
false, // |include_empty_intervals|
observer) {}
void MaxCounter::Add(int sample) {
StatsCounter::Add(sample);
}
bool MaxCounter::GetMetric(int* metric) const {
if (samples_->Empty())
return false;
*metric = samples_->Max();
return true;
}
int MaxCounter::GetValueForEmptyInterval() const {
RTC_NOTREACHED();
return 0;
}
PercentCounter::PercentCounter(Clock* clock, StatsCounterObserver* observer)
: StatsCounter(clock,
kDefaultProcessIntervalMs,
false, // |include_empty_intervals|
observer) {}
void PercentCounter::Add(bool sample) {
StatsCounter::Add(sample ? 1 : 0);
}
bool PercentCounter::GetMetric(int* metric) const {
int64_t count = samples_->Count();
if (count == 0)
return false;
*metric = (samples_->Sum() * 100 + count / 2) / count;
return true;
}
int PercentCounter::GetValueForEmptyInterval() const {
RTC_NOTREACHED();
return 0;
}
PermilleCounter::PermilleCounter(Clock* clock, StatsCounterObserver* observer)
: StatsCounter(clock,
kDefaultProcessIntervalMs,
false, // |include_empty_intervals|
observer) {}
void PermilleCounter::Add(bool sample) {
StatsCounter::Add(sample ? 1 : 0);
}
bool PermilleCounter::GetMetric(int* metric) const {
int64_t count = samples_->Count();
if (count == 0)
return false;
*metric = (samples_->Sum() * 1000 + count / 2) / count;
return true;
}
int PermilleCounter::GetValueForEmptyInterval() const {
RTC_NOTREACHED();
return 0;
}
RateCounter::RateCounter(Clock* clock,
StatsCounterObserver* observer,
bool include_empty_intervals)
: StatsCounter(clock,
kDefaultProcessIntervalMs,
include_empty_intervals,
observer) {}
void RateCounter::Add(int sample) {
StatsCounter::Add(sample);
}
bool RateCounter::GetMetric(int* metric) const {
if (samples_->Empty())
return false;
*metric = (samples_->Sum() * 1000 + process_intervals_ms_ / 2) /
process_intervals_ms_;
return true;
}
int RateCounter::GetValueForEmptyInterval() const {
return 0;
}
RateAccCounter::RateAccCounter(Clock* clock,
StatsCounterObserver* observer,
bool include_empty_intervals)
: StatsCounter(clock,
kDefaultProcessIntervalMs,
include_empty_intervals,
observer) {}
void RateAccCounter::Set(int64_t sample, uint32_t stream_id) {
StatsCounter::Set(sample, stream_id);
}
void RateAccCounter::SetLast(int64_t sample, uint32_t stream_id) {
StatsCounter::SetLast(sample, stream_id);
}
bool RateAccCounter::GetMetric(int* metric) const {
int64_t diff = samples_->Diff();
if (diff < 0 || (!include_empty_intervals_ && diff == 0))
return false;
*metric = (diff * 1000 + process_intervals_ms_ / 2) / process_intervals_ms_;
return true;
}
int RateAccCounter::GetValueForEmptyInterval() const {
return 0;
}
} // namespace webrtc