henrik.lundin 6d8e011b64 Change NetEq::GetAudio to use AudioFrame
With this change, NetEq now uses AudioFrame as output type, like the
surrounding functions in ACM and VoiceEngine already do.

The computational savings is probably slim, since one memcpy is
removed while another one is added (both in AcmReceiver::GetAudio).

More simplifications and clean-up will be done in
AcmReceiver::GetAudio in future CLs.

BUG=webrtc:5607

Review URL: https://codereview.webrtc.org/1750353002

Cr-Commit-Position: refs/heads/master@{#11874}
2016-03-04 18:34:26 +00:00

524 lines
18 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/acm2/acm_receiver.h"
#include <stdlib.h> // malloc
#include <algorithm> // sort
#include <vector>
#include "webrtc/base/checks.h"
#include "webrtc/base/format_macros.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/safe_conversions.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
#include "webrtc/modules/audio_coding/acm2/acm_resampler.h"
#include "webrtc/modules/audio_coding/acm2/call_statistics.h"
#include "webrtc/modules/audio_coding/neteq/include/neteq.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/tick_util.h"
#include "webrtc/system_wrappers/include/trace.h"
namespace webrtc {
namespace acm2 {
namespace {
// |vad_activity_| field of |audio_frame| is set to |previous_audio_activity_|
// before the call to this function.
void SetAudioFrameActivityAndType(bool vad_enabled,
NetEqOutputType type,
AudioFrame* audio_frame) {
if (vad_enabled) {
switch (type) {
case kOutputNormal: {
audio_frame->vad_activity_ = AudioFrame::kVadActive;
audio_frame->speech_type_ = AudioFrame::kNormalSpeech;
break;
}
case kOutputVADPassive: {
audio_frame->vad_activity_ = AudioFrame::kVadPassive;
audio_frame->speech_type_ = AudioFrame::kNormalSpeech;
break;
}
case kOutputCNG: {
audio_frame->vad_activity_ = AudioFrame::kVadPassive;
audio_frame->speech_type_ = AudioFrame::kCNG;
break;
}
case kOutputPLC: {
// Don't change |audio_frame->vad_activity_|, it should be the same as
// |previous_audio_activity_|.
audio_frame->speech_type_ = AudioFrame::kPLC;
break;
}
case kOutputPLCtoCNG: {
audio_frame->vad_activity_ = AudioFrame::kVadPassive;
audio_frame->speech_type_ = AudioFrame::kPLCCNG;
break;
}
default:
assert(false);
}
} else {
// Always return kVadUnknown when receive VAD is inactive
audio_frame->vad_activity_ = AudioFrame::kVadUnknown;
switch (type) {
case kOutputNormal: {
audio_frame->speech_type_ = AudioFrame::kNormalSpeech;
break;
}
case kOutputCNG: {
audio_frame->speech_type_ = AudioFrame::kCNG;
break;
}
case kOutputPLC: {
audio_frame->speech_type_ = AudioFrame::kPLC;
break;
}
case kOutputPLCtoCNG: {
audio_frame->speech_type_ = AudioFrame::kPLCCNG;
break;
}
case kOutputVADPassive: {
// Normally, we should no get any VAD decision if post-decoding VAD is
// not active. However, if post-decoding VAD has been active then
// disabled, we might be here for couple of frames.
audio_frame->speech_type_ = AudioFrame::kNormalSpeech;
LOG(WARNING) << "Post-decoding VAD is disabled but output is "
<< "labeled VAD-passive";
break;
}
default:
assert(false);
}
}
}
// Is the given codec a CNG codec?
// TODO(kwiberg): Move to RentACodec.
bool IsCng(int codec_id) {
auto i = RentACodec::CodecIdFromIndex(codec_id);
return (i && (*i == RentACodec::CodecId::kCNNB ||
*i == RentACodec::CodecId::kCNWB ||
*i == RentACodec::CodecId::kCNSWB ||
*i == RentACodec::CodecId::kCNFB));
}
} // namespace
AcmReceiver::AcmReceiver(const AudioCodingModule::Config& config)
: last_audio_decoder_(nullptr),
previous_audio_activity_(AudioFrame::kVadPassive),
last_audio_buffer_(new int16_t[AudioFrame::kMaxDataSizeSamples]),
neteq_(NetEq::Create(config.neteq_config)),
vad_enabled_(config.neteq_config.enable_post_decode_vad),
clock_(config.clock),
resampled_last_output_frame_(true) {
assert(clock_);
memset(last_audio_buffer_.get(), 0, AudioFrame::kMaxDataSizeSamples);
}
AcmReceiver::~AcmReceiver() {
delete neteq_;
}
int AcmReceiver::SetMinimumDelay(int delay_ms) {
if (neteq_->SetMinimumDelay(delay_ms))
return 0;
LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
return -1;
}
int AcmReceiver::SetMaximumDelay(int delay_ms) {
if (neteq_->SetMaximumDelay(delay_ms))
return 0;
LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
return -1;
}
int AcmReceiver::LeastRequiredDelayMs() const {
return neteq_->LeastRequiredDelayMs();
}
rtc::Optional<int> AcmReceiver::last_packet_sample_rate_hz() const {
rtc::CritScope lock(&crit_sect_);
return last_packet_sample_rate_hz_;
}
int AcmReceiver::last_output_sample_rate_hz() const {
return neteq_->last_output_sample_rate_hz();
}
int AcmReceiver::InsertPacket(const WebRtcRTPHeader& rtp_header,
rtc::ArrayView<const uint8_t> incoming_payload) {
uint32_t receive_timestamp = 0;
const RTPHeader* header = &rtp_header.header; // Just a shorthand.
{
rtc::CritScope lock(&crit_sect_);
const Decoder* decoder = RtpHeaderToDecoder(*header, incoming_payload[0]);
if (!decoder) {
LOG_F(LS_ERROR) << "Payload-type "
<< static_cast<int>(header->payloadType)
<< " is not registered.";
return -1;
}
const int sample_rate_hz = [&decoder] {
const auto ci = RentACodec::CodecIdFromIndex(decoder->acm_codec_id);
return ci ? RentACodec::CodecInstById(*ci)->plfreq : -1;
}();
receive_timestamp = NowInTimestamp(sample_rate_hz);
// If this is a CNG while the audio codec is not mono, skip pushing in
// packets into NetEq.
if (IsCng(decoder->acm_codec_id) && last_audio_decoder_ &&
last_audio_decoder_->channels > 1)
return 0;
if (!IsCng(decoder->acm_codec_id) &&
decoder->acm_codec_id !=
*RentACodec::CodecIndexFromId(RentACodec::CodecId::kAVT)) {
last_audio_decoder_ = decoder;
last_packet_sample_rate_hz_ = rtc::Optional<int>(decoder->sample_rate_hz);
}
} // |crit_sect_| is released.
if (neteq_->InsertPacket(rtp_header, incoming_payload, receive_timestamp) <
0) {
LOG(LERROR) << "AcmReceiver::InsertPacket "
<< static_cast<int>(header->payloadType)
<< " Failed to insert packet";
return -1;
}
return 0;
}
int AcmReceiver::GetAudio(int desired_freq_hz, AudioFrame* audio_frame) {
// Accessing members, take the lock.
rtc::CritScope lock(&crit_sect_);
enum NetEqOutputType type;
if (neteq_->GetAudio(audio_frame, &type) != NetEq::kOK) {
LOG(LERROR) << "AcmReceiver::GetAudio - NetEq Failed.";
return -1;
}
const int current_sample_rate_hz = neteq_->last_output_sample_rate_hz();
// Update if resampling is required.
const bool need_resampling =
(desired_freq_hz != -1) && (current_sample_rate_hz != desired_freq_hz);
if (need_resampling && !resampled_last_output_frame_) {
// Prime the resampler with the last frame.
int16_t temp_output[AudioFrame::kMaxDataSizeSamples];
int samples_per_channel_int = resampler_.Resample10Msec(
last_audio_buffer_.get(), current_sample_rate_hz, desired_freq_hz,
audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
temp_output);
if (samples_per_channel_int < 0) {
LOG(LERROR) << "AcmReceiver::GetAudio - "
"Resampling last_audio_buffer_ failed.";
return -1;
}
}
// TODO(henrik.lundin) Glitches in the output may appear if the output rate
// from NetEq changes. See WebRTC issue 3923.
if (need_resampling) {
int samples_per_channel_int = resampler_.Resample10Msec(
audio_frame->data_, current_sample_rate_hz, desired_freq_hz,
audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
audio_frame->data_);
if (samples_per_channel_int < 0) {
LOG(LERROR) << "AcmReceiver::GetAudio - Resampling audio_buffer_ failed.";
return -1;
}
audio_frame->samples_per_channel_ =
static_cast<size_t>(samples_per_channel_int);
audio_frame->sample_rate_hz_ = desired_freq_hz;
RTC_DCHECK_EQ(
audio_frame->sample_rate_hz_,
rtc::checked_cast<int>(audio_frame->samples_per_channel_ * 100));
resampled_last_output_frame_ = true;
} else {
resampled_last_output_frame_ = false;
// We might end up here ONLY if codec is changed.
}
// Store current audio in |last_audio_buffer_| for next time.
memcpy(last_audio_buffer_.get(), audio_frame->data_,
sizeof(int16_t) * audio_frame->samples_per_channel_ *
audio_frame->num_channels_);
// Should set |vad_activity| before calling SetAudioFrameActivityAndType().
audio_frame->vad_activity_ = previous_audio_activity_;
SetAudioFrameActivityAndType(vad_enabled_, type, audio_frame);
previous_audio_activity_ = audio_frame->vad_activity_;
call_stats_.DecodedByNetEq(audio_frame->speech_type_);
// Computes the RTP timestamp of the first sample in |audio_frame| from
// |GetPlayoutTimestamp|, which is the timestamp of the last sample of
// |audio_frame|.
// TODO(henrik.lundin) Move setting of audio_frame->timestamp_ inside NetEq.
uint32_t playout_timestamp = 0;
if (GetPlayoutTimestamp(&playout_timestamp)) {
audio_frame->timestamp_ = playout_timestamp -
static_cast<uint32_t>(audio_frame->samples_per_channel_);
} else {
// Remain 0 until we have a valid |playout_timestamp|.
audio_frame->timestamp_ = 0;
}
return 0;
}
int32_t AcmReceiver::AddCodec(int acm_codec_id,
uint8_t payload_type,
size_t channels,
int sample_rate_hz,
AudioDecoder* audio_decoder,
const std::string& name) {
const auto neteq_decoder = [acm_codec_id, channels]() -> NetEqDecoder {
if (acm_codec_id == -1)
return NetEqDecoder::kDecoderArbitrary; // External decoder.
const rtc::Optional<RentACodec::CodecId> cid =
RentACodec::CodecIdFromIndex(acm_codec_id);
RTC_DCHECK(cid) << "Invalid codec index: " << acm_codec_id;
const rtc::Optional<NetEqDecoder> ned =
RentACodec::NetEqDecoderFromCodecId(*cid, channels);
RTC_DCHECK(ned) << "Invalid codec ID: " << static_cast<int>(*cid);
return *ned;
}();
rtc::CritScope lock(&crit_sect_);
// The corresponding NetEq decoder ID.
// If this codec has been registered before.
auto it = decoders_.find(payload_type);
if (it != decoders_.end()) {
const Decoder& decoder = it->second;
if (acm_codec_id != -1 && decoder.acm_codec_id == acm_codec_id &&
decoder.channels == channels &&
decoder.sample_rate_hz == sample_rate_hz) {
// Re-registering the same codec. Do nothing and return.
return 0;
}
// Changing codec. First unregister the old codec, then register the new
// one.
if (neteq_->RemovePayloadType(payload_type) != NetEq::kOK) {
LOG(LERROR) << "Cannot remove payload " << static_cast<int>(payload_type);
return -1;
}
decoders_.erase(it);
}
int ret_val;
if (!audio_decoder) {
ret_val = neteq_->RegisterPayloadType(neteq_decoder, name, payload_type);
} else {
ret_val = neteq_->RegisterExternalDecoder(
audio_decoder, neteq_decoder, name, payload_type, sample_rate_hz);
}
if (ret_val != NetEq::kOK) {
LOG(LERROR) << "AcmReceiver::AddCodec " << acm_codec_id
<< static_cast<int>(payload_type)
<< " channels: " << channels;
return -1;
}
Decoder decoder;
decoder.acm_codec_id = acm_codec_id;
decoder.payload_type = payload_type;
decoder.channels = channels;
decoder.sample_rate_hz = sample_rate_hz;
decoders_[payload_type] = decoder;
return 0;
}
void AcmReceiver::EnableVad() {
neteq_->EnableVad();
rtc::CritScope lock(&crit_sect_);
vad_enabled_ = true;
}
void AcmReceiver::DisableVad() {
neteq_->DisableVad();
rtc::CritScope lock(&crit_sect_);
vad_enabled_ = false;
}
void AcmReceiver::FlushBuffers() {
neteq_->FlushBuffers();
}
// If failed in removing one of the codecs, this method continues to remove as
// many as it can.
int AcmReceiver::RemoveAllCodecs() {
int ret_val = 0;
rtc::CritScope lock(&crit_sect_);
for (auto it = decoders_.begin(); it != decoders_.end(); ) {
auto cur = it;
++it; // it will be valid even if we erase cur
if (neteq_->RemovePayloadType(cur->second.payload_type) == 0) {
decoders_.erase(cur);
} else {
LOG_F(LS_ERROR) << "Cannot remove payload "
<< static_cast<int>(cur->second.payload_type);
ret_val = -1;
}
}
// No codec is registered, invalidate last audio decoder.
last_audio_decoder_ = nullptr;
last_packet_sample_rate_hz_ = rtc::Optional<int>();
return ret_val;
}
int AcmReceiver::RemoveCodec(uint8_t payload_type) {
rtc::CritScope lock(&crit_sect_);
auto it = decoders_.find(payload_type);
if (it == decoders_.end()) { // Such a payload-type is not registered.
return 0;
}
if (neteq_->RemovePayloadType(payload_type) != NetEq::kOK) {
LOG(LERROR) << "AcmReceiver::RemoveCodec" << static_cast<int>(payload_type);
return -1;
}
if (last_audio_decoder_ == &it->second) {
last_audio_decoder_ = nullptr;
last_packet_sample_rate_hz_ = rtc::Optional<int>();
}
decoders_.erase(it);
return 0;
}
bool AcmReceiver::GetPlayoutTimestamp(uint32_t* timestamp) {
return neteq_->GetPlayoutTimestamp(timestamp);
}
int AcmReceiver::LastAudioCodec(CodecInst* codec) const {
rtc::CritScope lock(&crit_sect_);
if (!last_audio_decoder_) {
return -1;
}
*codec = *RentACodec::CodecInstById(
*RentACodec::CodecIdFromIndex(last_audio_decoder_->acm_codec_id));
codec->pltype = last_audio_decoder_->payload_type;
codec->channels = last_audio_decoder_->channels;
codec->plfreq = last_audio_decoder_->sample_rate_hz;
return 0;
}
void AcmReceiver::GetNetworkStatistics(NetworkStatistics* acm_stat) {
NetEqNetworkStatistics neteq_stat;
// NetEq function always returns zero, so we don't check the return value.
neteq_->NetworkStatistics(&neteq_stat);
acm_stat->currentBufferSize = neteq_stat.current_buffer_size_ms;
acm_stat->preferredBufferSize = neteq_stat.preferred_buffer_size_ms;
acm_stat->jitterPeaksFound = neteq_stat.jitter_peaks_found ? true : false;
acm_stat->currentPacketLossRate = neteq_stat.packet_loss_rate;
acm_stat->currentDiscardRate = neteq_stat.packet_discard_rate;
acm_stat->currentExpandRate = neteq_stat.expand_rate;
acm_stat->currentSpeechExpandRate = neteq_stat.speech_expand_rate;
acm_stat->currentPreemptiveRate = neteq_stat.preemptive_rate;
acm_stat->currentAccelerateRate = neteq_stat.accelerate_rate;
acm_stat->currentSecondaryDecodedRate = neteq_stat.secondary_decoded_rate;
acm_stat->clockDriftPPM = neteq_stat.clockdrift_ppm;
acm_stat->addedSamples = neteq_stat.added_zero_samples;
acm_stat->meanWaitingTimeMs = neteq_stat.mean_waiting_time_ms;
acm_stat->medianWaitingTimeMs = neteq_stat.median_waiting_time_ms;
acm_stat->minWaitingTimeMs = neteq_stat.min_waiting_time_ms;
acm_stat->maxWaitingTimeMs = neteq_stat.max_waiting_time_ms;
}
int AcmReceiver::DecoderByPayloadType(uint8_t payload_type,
CodecInst* codec) const {
rtc::CritScope lock(&crit_sect_);
auto it = decoders_.find(payload_type);
if (it == decoders_.end()) {
LOG(LERROR) << "AcmReceiver::DecoderByPayloadType "
<< static_cast<int>(payload_type);
return -1;
}
const Decoder& decoder = it->second;
*codec = *RentACodec::CodecInstById(
*RentACodec::CodecIdFromIndex(decoder.acm_codec_id));
codec->pltype = decoder.payload_type;
codec->channels = decoder.channels;
codec->plfreq = decoder.sample_rate_hz;
return 0;
}
int AcmReceiver::EnableNack(size_t max_nack_list_size) {
neteq_->EnableNack(max_nack_list_size);
return 0;
}
void AcmReceiver::DisableNack() {
neteq_->DisableNack();
}
std::vector<uint16_t> AcmReceiver::GetNackList(
int64_t round_trip_time_ms) const {
return neteq_->GetNackList(round_trip_time_ms);
}
void AcmReceiver::ResetInitialDelay() {
neteq_->SetMinimumDelay(0);
// TODO(turajs): Should NetEq Buffer be flushed?
}
const AcmReceiver::Decoder* AcmReceiver::RtpHeaderToDecoder(
const RTPHeader& rtp_header,
uint8_t payload_type) const {
auto it = decoders_.find(rtp_header.payloadType);
const auto red_index =
RentACodec::CodecIndexFromId(RentACodec::CodecId::kRED);
if (red_index && // This ensures that RED is defined in WebRTC.
it != decoders_.end() && it->second.acm_codec_id == *red_index) {
// This is a RED packet, get the payload of the audio codec.
it = decoders_.find(payload_type & 0x7F);
}
// Check if the payload is registered.
return it != decoders_.end() ? &it->second : nullptr;
}
uint32_t AcmReceiver::NowInTimestamp(int decoder_sampling_rate) const {
// Down-cast the time to (32-6)-bit since we only care about
// the least significant bits. (32-6) bits cover 2^(32-6) = 67108864 ms.
// We masked 6 most significant bits of 32-bit so there is no overflow in
// the conversion from milliseconds to timestamp.
const uint32_t now_in_ms = static_cast<uint32_t>(
clock_->TimeInMilliseconds() & 0x03ffffff);
return static_cast<uint32_t>(
(decoder_sampling_rate / 1000) * now_in_ms);
}
void AcmReceiver::GetDecodingCallStatistics(
AudioDecodingCallStats* stats) const {
rtc::CritScope lock(&crit_sect_);
*stats = call_stats_.GetDecodingStatistics();
}
} // namespace acm2
} // namespace webrtc