webrtc_m130/webrtc/modules/video_coding/video_codec_initializer.cc
asapersson 6b463faccb Turn off error resilience for VP9 if no spatial or temporal layers are configured and NACK is enabled.
Error resilience is currently always enabled for VP9 which reduces quality.

Reland of https://codereview.webrtc.org/2532053002

BUG=webrtc:6783

Review-Url: https://codereview.webrtc.org/2925253002
Cr-Commit-Position: refs/heads/master@{#19385}
2017-08-17 14:28:10 +00:00

246 lines
9.8 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/include/video_codec_initializer.h"
#include "webrtc/common_types.h"
#include "webrtc/common_video/include/video_bitrate_allocator.h"
#include "webrtc/modules/video_coding/codecs/vp8/screenshare_layers.h"
#include "webrtc/modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "webrtc/modules/video_coding/codecs/vp8/temporal_layers.h"
#include "webrtc/modules/video_coding/include/video_coding_defines.h"
#include "webrtc/modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "webrtc/rtc_base/basictypes.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace {
bool TemporalLayersConfigured(const std::vector<VideoStream>& streams) {
for (const VideoStream& stream : streams) {
if (stream.temporal_layer_thresholds_bps.size() > 0)
return true;
}
return false;
}
} // namespace
bool VideoCodecInitializer::SetupCodec(
const VideoEncoderConfig& config,
const VideoSendStream::Config::EncoderSettings settings,
const std::vector<VideoStream>& streams,
bool nack_enabled,
VideoCodec* codec,
std::unique_ptr<VideoBitrateAllocator>* bitrate_allocator) {
*codec =
VideoEncoderConfigToVideoCodec(config, streams, settings.payload_name,
settings.payload_type, nack_enabled);
std::unique_ptr<TemporalLayersFactory> tl_factory;
switch (codec->codecType) {
case kVideoCodecVP8: {
if (!codec->VP8()->tl_factory) {
if (codec->mode == kScreensharing &&
(codec->numberOfSimulcastStreams > 1 ||
(codec->numberOfSimulcastStreams == 1 &&
codec->VP8()->numberOfTemporalLayers == 2))) {
// Conference mode temporal layering for screen content.
tl_factory.reset(new ScreenshareTemporalLayersFactory());
} else {
// Standard video temporal layers.
tl_factory.reset(new TemporalLayersFactory());
}
codec->VP8()->tl_factory = tl_factory.get();
}
break;
}
default: {
// TODO(sprang): Warn, once we have specific allocators for all supported
// codec types.
break;
}
}
*bitrate_allocator = CreateBitrateAllocator(*codec, std::move(tl_factory));
return true;
}
std::unique_ptr<VideoBitrateAllocator>
VideoCodecInitializer::CreateBitrateAllocator(
const VideoCodec& codec,
std::unique_ptr<TemporalLayersFactory> tl_factory) {
std::unique_ptr<VideoBitrateAllocator> rate_allocator;
switch (codec.codecType) {
case kVideoCodecVP8: {
// Set up default VP8 temporal layer factory, if not provided.
rate_allocator.reset(
new SimulcastRateAllocator(codec, std::move(tl_factory)));
} break;
default:
rate_allocator.reset(new DefaultVideoBitrateAllocator(codec));
}
return rate_allocator;
}
// TODO(sprang): Split this up and separate the codec specific parts.
VideoCodec VideoCodecInitializer::VideoEncoderConfigToVideoCodec(
const VideoEncoderConfig& config,
const std::vector<VideoStream>& streams,
const std::string& payload_name,
int payload_type,
bool nack_enabled) {
static const int kEncoderMinBitrateKbps = 30;
RTC_DCHECK(!streams.empty());
RTC_DCHECK_GE(config.min_transmit_bitrate_bps, 0);
VideoCodec video_codec;
memset(&video_codec, 0, sizeof(video_codec));
video_codec.codecType = PayloadNameToCodecType(payload_name)
.value_or(VideoCodecType::kVideoCodecGeneric);
switch (config.content_type) {
case VideoEncoderConfig::ContentType::kRealtimeVideo:
video_codec.mode = kRealtimeVideo;
break;
case VideoEncoderConfig::ContentType::kScreen:
video_codec.mode = kScreensharing;
if (!streams.empty() &&
streams[0].temporal_layer_thresholds_bps.size() == 1) {
video_codec.targetBitrate =
streams[0].temporal_layer_thresholds_bps[0] / 1000;
}
break;
}
if (config.encoder_specific_settings)
config.encoder_specific_settings->FillEncoderSpecificSettings(&video_codec);
switch (video_codec.codecType) {
case kVideoCodecVP8: {
if (!config.encoder_specific_settings)
*video_codec.VP8() = VideoEncoder::GetDefaultVp8Settings();
video_codec.VP8()->numberOfTemporalLayers = static_cast<unsigned char>(
streams.back().temporal_layer_thresholds_bps.size() + 1);
if (nack_enabled && !TemporalLayersConfigured(streams)) {
LOG(LS_INFO) << "No temporal layers and nack enabled -> resilience off";
video_codec.VP8()->resilience = kResilienceOff;
}
break;
}
case kVideoCodecVP9: {
if (!config.encoder_specific_settings)
*video_codec.VP9() = VideoEncoder::GetDefaultVp9Settings();
if (video_codec.mode == kScreensharing &&
config.encoder_specific_settings) {
video_codec.VP9()->flexibleMode = true;
// For now VP9 screensharing use 1 temporal and 2 spatial layers.
RTC_DCHECK_EQ(1, video_codec.VP9()->numberOfTemporalLayers);
RTC_DCHECK_EQ(2, video_codec.VP9()->numberOfSpatialLayers);
}
video_codec.VP9()->numberOfTemporalLayers = static_cast<unsigned char>(
streams.back().temporal_layer_thresholds_bps.size() + 1);
if (nack_enabled && !TemporalLayersConfigured(streams) &&
video_codec.VP9()->numberOfSpatialLayers == 1) {
LOG(LS_INFO) << "No temporal or spatial layers and nack enabled -> "
<< "resilience off";
video_codec.VP9()->resilienceOn = false;
}
break;
}
case kVideoCodecH264: {
if (!config.encoder_specific_settings)
*video_codec.H264() = VideoEncoder::GetDefaultH264Settings();
break;
}
default:
// TODO(pbos): Support encoder_settings codec-agnostically.
RTC_DCHECK(!config.encoder_specific_settings)
<< "Encoder-specific settings for codec type not wired up.";
break;
}
strncpy(video_codec.plName, payload_name.c_str(), kPayloadNameSize - 1);
video_codec.plName[kPayloadNameSize - 1] = '\0';
video_codec.plType = payload_type;
video_codec.numberOfSimulcastStreams =
static_cast<unsigned char>(streams.size());
video_codec.minBitrate = streams[0].min_bitrate_bps / 1000;
if (video_codec.minBitrate < kEncoderMinBitrateKbps)
video_codec.minBitrate = kEncoderMinBitrateKbps;
video_codec.timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
kDefaultOutlierFrameSizePercent};
RTC_DCHECK_LE(streams.size(), kMaxSimulcastStreams);
if (video_codec.codecType == kVideoCodecVP9) {
// If the vector is empty, bitrates will be configured automatically.
RTC_DCHECK(config.spatial_layers.empty() ||
config.spatial_layers.size() ==
video_codec.VP9()->numberOfSpatialLayers);
RTC_DCHECK_LE(video_codec.VP9()->numberOfSpatialLayers,
kMaxSimulcastStreams);
for (size_t i = 0; i < config.spatial_layers.size(); ++i)
video_codec.spatialLayers[i] = config.spatial_layers[i];
}
for (size_t i = 0; i < streams.size(); ++i) {
SimulcastStream* sim_stream = &video_codec.simulcastStream[i];
RTC_DCHECK_GT(streams[i].width, 0);
RTC_DCHECK_GT(streams[i].height, 0);
RTC_DCHECK_GT(streams[i].max_framerate, 0);
// Different framerates not supported per stream at the moment, unless it's
// screenshare where there is an exception and a simulcast encoder adapter,
// which supports different framerates, is used instead.
if (config.content_type != VideoEncoderConfig::ContentType::kScreen) {
RTC_DCHECK_EQ(streams[i].max_framerate, streams[0].max_framerate);
}
RTC_DCHECK_GE(streams[i].min_bitrate_bps, 0);
RTC_DCHECK_GE(streams[i].target_bitrate_bps, streams[i].min_bitrate_bps);
RTC_DCHECK_GE(streams[i].max_bitrate_bps, streams[i].target_bitrate_bps);
RTC_DCHECK_GE(streams[i].max_qp, 0);
sim_stream->width = static_cast<uint16_t>(streams[i].width);
sim_stream->height = static_cast<uint16_t>(streams[i].height);
sim_stream->minBitrate = streams[i].min_bitrate_bps / 1000;
sim_stream->targetBitrate = streams[i].target_bitrate_bps / 1000;
sim_stream->maxBitrate = streams[i].max_bitrate_bps / 1000;
sim_stream->qpMax = streams[i].max_qp;
sim_stream->numberOfTemporalLayers = static_cast<unsigned char>(
streams[i].temporal_layer_thresholds_bps.size() + 1);
video_codec.width =
std::max(video_codec.width, static_cast<uint16_t>(streams[i].width));
video_codec.height =
std::max(video_codec.height, static_cast<uint16_t>(streams[i].height));
video_codec.minBitrate =
std::min(static_cast<uint16_t>(video_codec.minBitrate),
static_cast<uint16_t>(streams[i].min_bitrate_bps / 1000));
video_codec.maxBitrate += streams[i].max_bitrate_bps / 1000;
video_codec.qpMax = std::max(video_codec.qpMax,
static_cast<unsigned int>(streams[i].max_qp));
}
if (video_codec.maxBitrate == 0) {
// Unset max bitrate -> cap to one bit per pixel.
video_codec.maxBitrate =
(video_codec.width * video_codec.height * video_codec.maxFramerate) /
1000;
}
if (video_codec.maxBitrate < kEncoderMinBitrateKbps)
video_codec.maxBitrate = kEncoderMinBitrateKbps;
RTC_DCHECK_GT(streams[0].max_framerate, 0);
video_codec.maxFramerate = streams[0].max_framerate;
return video_codec;
}
} // namespace webrtc