kwiberg af476c737f RTC_[D]CHECK_op: Remove "u" suffix on integer constants
There's no longer any need to make the two arguments have the same
signedness, so we can drop the "u" suffix on literal integer
arguments.

NOPRESUBMIT=true
BUG=webrtc:6645

Review-Url: https://codereview.webrtc.org/2535593002
Cr-Commit-Position: refs/heads/master@{#15280}
2016-11-28 23:21:51 +00:00

391 lines
14 KiB
C++

/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <limits>
#include <numeric>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/window_generator.h"
namespace webrtc {
namespace {
const size_t kErbResolution = 2;
const int kWindowSizeMs = 16;
const int kChunkSizeMs = 10; // Size provided by APM.
const float kClipFreqKhz = 0.2f;
const float kKbdAlpha = 1.5f;
const float kLambdaBot = -1.f; // Extreme values in bisection
const float kLambdaTop = -1e-5f; // search for lamda.
const float kVoiceProbabilityThreshold = 0.5f;
// Number of chunks after voice activity which is still considered speech.
const size_t kSpeechOffsetDelay = 10;
const float kDecayRate = 0.995f; // Power estimation decay rate.
const float kMaxRelativeGainChange = 0.005f;
const float kRho = 0.0004f; // Default production and interpretation SNR.
const float kPowerNormalizationFactor = 1.f / (1 << 30);
const float kMaxActiveSNR = 128.f; // 21dB
const float kMinInactiveSNR = 32.f; // 15dB
const size_t kGainUpdatePeriod = 10u;
// Returns dot product of vectors |a| and |b| with size |length|.
float DotProduct(const float* a, const float* b, size_t length) {
float ret = 0.f;
for (size_t i = 0; i < length; ++i) {
ret += a[i] * b[i];
}
return ret;
}
// Computes the power across ERB bands from the power spectral density |pow|.
// Stores it in |result|.
void MapToErbBands(const float* pow,
const std::vector<std::vector<float>>& filter_bank,
float* result) {
for (size_t i = 0; i < filter_bank.size(); ++i) {
RTC_DCHECK_GT(filter_bank[i].size(), 0);
result[i] = kPowerNormalizationFactor *
DotProduct(filter_bank[i].data(), pow, filter_bank[i].size());
}
}
} // namespace
IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz,
size_t num_render_channels,
size_t num_bands,
size_t num_noise_bins)
: freqs_(RealFourier::ComplexLength(
RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))),
num_noise_bins_(num_noise_bins),
chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)),
bank_size_(GetBankSize(sample_rate_hz, kErbResolution)),
sample_rate_hz_(sample_rate_hz),
num_render_channels_(num_render_channels),
clear_power_estimator_(freqs_, kDecayRate),
noise_power_estimator_(num_noise_bins, kDecayRate),
filtered_clear_pow_(bank_size_, 0.f),
filtered_noise_pow_(num_noise_bins, 0.f),
center_freqs_(bank_size_),
capture_filter_bank_(CreateErbBank(num_noise_bins)),
render_filter_bank_(CreateErbBank(freqs_)),
gains_eq_(bank_size_),
gain_applier_(freqs_, kMaxRelativeGainChange),
audio_s16_(chunk_length_),
chunks_since_voice_(kSpeechOffsetDelay),
is_speech_(false),
snr_(kMaxActiveSNR),
is_active_(false),
num_chunks_(0u),
num_active_chunks_(0u),
noise_estimation_buffer_(num_noise_bins),
noise_estimation_queue_(kMaxNumNoiseEstimatesToBuffer,
std::vector<float>(num_noise_bins),
RenderQueueItemVerifier<float>(num_noise_bins)) {
RTC_DCHECK_LE(kRho, 1.f);
const size_t erb_index = static_cast<size_t>(
ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) +
43.f));
start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution);
size_t window_size = static_cast<size_t>(1) << RealFourier::FftOrder(freqs_);
std::vector<float> kbd_window(window_size);
WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size,
kbd_window.data());
render_mangler_.reset(new LappedTransform(
num_render_channels_, num_render_channels_, chunk_length_,
kbd_window.data(), window_size, window_size / 2, this));
const size_t initial_delay = render_mangler_->initial_delay();
for (size_t i = 0u; i < num_bands - 1; ++i) {
high_bands_buffers_.push_back(std::unique_ptr<intelligibility::DelayBuffer>(
new intelligibility::DelayBuffer(initial_delay, num_render_channels_)));
}
}
IntelligibilityEnhancer::~IntelligibilityEnhancer() {
// Don't rely on this log, since the destructor isn't called when the
// app/tab is killed.
if (num_chunks_ > 0) {
LOG(LS_INFO) << "Intelligibility Enhancer was active for "
<< 100.f * static_cast<float>(num_active_chunks_) / num_chunks_
<< "% of the call.";
} else {
LOG(LS_INFO) << "Intelligibility Enhancer processed no chunk.";
}
}
void IntelligibilityEnhancer::SetCaptureNoiseEstimate(
std::vector<float> noise, float gain) {
RTC_DCHECK_EQ(noise.size(), num_noise_bins_);
for (auto& bin : noise) {
bin *= gain;
}
// Disregarding return value since buffer overflow is acceptable, because it
// is not critical to get each noise estimate.
if (noise_estimation_queue_.Insert(&noise)) {
};
}
void IntelligibilityEnhancer::ProcessRenderAudio(AudioBuffer* audio) {
RTC_DCHECK_EQ(num_render_channels_, audio->num_channels());
while (noise_estimation_queue_.Remove(&noise_estimation_buffer_)) {
noise_power_estimator_.Step(noise_estimation_buffer_.data());
}
float* const* low_band = audio->split_channels_f(kBand0To8kHz);
is_speech_ = IsSpeech(low_band[0]);
render_mangler_->ProcessChunk(low_band, low_band);
DelayHighBands(audio);
}
void IntelligibilityEnhancer::ProcessAudioBlock(
const std::complex<float>* const* in_block,
size_t in_channels,
size_t frames,
size_t /* out_channels */,
std::complex<float>* const* out_block) {
RTC_DCHECK_EQ(freqs_, frames);
if (is_speech_) {
clear_power_estimator_.Step(in_block[0]);
}
SnrBasedEffectActivation();
++num_chunks_;
if (is_active_) {
++num_active_chunks_;
if (num_chunks_ % kGainUpdatePeriod == 0) {
MapToErbBands(clear_power_estimator_.power().data(), render_filter_bank_,
filtered_clear_pow_.data());
MapToErbBands(noise_power_estimator_.power().data(), capture_filter_bank_,
filtered_noise_pow_.data());
SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.data());
const float power_target = std::accumulate(
filtered_clear_pow_.data(),
filtered_clear_pow_.data() + bank_size_,
0.f);
const float power_top =
DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.data());
const float power_bot =
DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
if (power_target >= power_bot && power_target <= power_top) {
SolveForLambda(power_target);
UpdateErbGains();
} // Else experiencing power underflow, so do nothing.
}
}
for (size_t i = 0; i < in_channels; ++i) {
gain_applier_.Apply(in_block[i], out_block[i]);
}
}
void IntelligibilityEnhancer::SnrBasedEffectActivation() {
const float* clear_psd = clear_power_estimator_.power().data();
const float* noise_psd = noise_power_estimator_.power().data();
const float clear_power =
std::accumulate(clear_psd, clear_psd + freqs_, 0.f);
const float noise_power =
std::accumulate(noise_psd, noise_psd + freqs_, 0.f);
snr_ = kDecayRate * snr_ + (1.f - kDecayRate) * clear_power /
(noise_power + std::numeric_limits<float>::epsilon());
if (is_active_) {
if (snr_ > kMaxActiveSNR) {
LOG(LS_INFO) << "Intelligibility Enhancer was deactivated at chunk "
<< num_chunks_;
is_active_ = false;
// Set the target gains to unity.
float* gains = gain_applier_.target();
for (size_t i = 0; i < freqs_; ++i) {
gains[i] = 1.f;
}
}
} else {
if (snr_ < kMinInactiveSNR) {
LOG(LS_INFO) << "Intelligibility Enhancer was activated at chunk "
<< num_chunks_;
is_active_ = true;
}
}
}
void IntelligibilityEnhancer::SolveForLambda(float power_target) {
const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
const int kMaxIters = 100; // for these, based on experiments.
const float reciprocal_power_target =
1.f / (power_target + std::numeric_limits<float>::epsilon());
float lambda_bot = kLambdaBot;
float lambda_top = kLambdaTop;
float power_ratio = 2.f; // Ratio of achieved power to target power.
int iters = 0;
while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) {
const float lambda = (lambda_bot + lambda_top) / 2.f;
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.data());
const float power =
DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
if (power < power_target) {
lambda_bot = lambda;
} else {
lambda_top = lambda;
}
power_ratio = std::fabs(power * reciprocal_power_target);
++iters;
}
}
void IntelligibilityEnhancer::UpdateErbGains() {
// (ERB gain) = filterbank' * (freq gain)
float* gains = gain_applier_.target();
for (size_t i = 0; i < freqs_; ++i) {
gains[i] = 0.f;
for (size_t j = 0; j < bank_size_; ++j) {
gains[i] += render_filter_bank_[j][i] * gains_eq_[j];
}
}
}
size_t IntelligibilityEnhancer::GetBankSize(int sample_rate,
size_t erb_resolution) {
float freq_limit = sample_rate / 2000.f;
size_t erb_scale = static_cast<size_t>(ceilf(
11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f));
return erb_scale * erb_resolution;
}
std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
size_t num_freqs) {
std::vector<std::vector<float>> filter_bank(bank_size_);
size_t lf = 1, rf = 4;
for (size_t i = 0; i < bank_size_; ++i) {
float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution));
center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
center_freqs_[i] -= 14678.49f;
}
float last_center_freq = center_freqs_[bank_size_ - 1];
for (size_t i = 0; i < bank_size_; ++i) {
center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
}
for (size_t i = 0; i < bank_size_; ++i) {
filter_bank[i].resize(num_freqs);
}
for (size_t i = 1; i <= bank_size_; ++i) {
static const size_t kOne = 1; // Avoids repeated static_cast<>s below.
size_t lll =
static_cast<size_t>(round(center_freqs_[std::max(kOne, i - lf) - 1] *
num_freqs / (0.5f * sample_rate_hz_)));
size_t ll = static_cast<size_t>(round(center_freqs_[std::max(kOne, i) - 1] *
num_freqs / (0.5f * sample_rate_hz_)));
lll = std::min(num_freqs, std::max(lll, kOne)) - 1;
ll = std::min(num_freqs, std::max(ll, kOne)) - 1;
size_t rrr = static_cast<size_t>(
round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs /
(0.5f * sample_rate_hz_)));
size_t rr = static_cast<size_t>(
round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs /
(0.5f * sample_rate_hz_)));
rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1;
rr = std::min(num_freqs, std::max(rr, kOne)) - 1;
float step = ll == lll ? 0.f : 1.f / (ll - lll);
float element = 0.f;
for (size_t j = lll; j <= ll; ++j) {
filter_bank[i - 1][j] = element;
element += step;
}
step = rr == rrr ? 0.f : 1.f / (rrr - rr);
element = 1.f;
for (size_t j = rr; j <= rrr; ++j) {
filter_bank[i - 1][j] = element;
element -= step;
}
for (size_t j = ll; j <= rr; ++j) {
filter_bank[i - 1][j] = 1.f;
}
}
for (size_t i = 0; i < num_freqs; ++i) {
float sum = 0.f;
for (size_t j = 0; j < bank_size_; ++j) {
sum += filter_bank[j][i];
}
for (size_t j = 0; j < bank_size_; ++j) {
filter_bank[j][i] /= sum;
}
}
return filter_bank;
}
void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
size_t start_freq,
float* sols) {
const float kMinPower = 1e-5f;
const float* pow_x0 = filtered_clear_pow_.data();
const float* pow_n0 = filtered_noise_pow_.data();
for (size_t n = 0; n < start_freq; ++n) {
sols[n] = 1.f;
}
// Analytic solution for optimal gains. See paper for derivation.
for (size_t n = start_freq; n < bank_size_; ++n) {
if (pow_x0[n] < kMinPower || pow_n0[n] < kMinPower) {
sols[n] = 1.f;
} else {
const float gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] +
lambda * pow_x0[n] * pow_n0[n] * pow_n0[n];
const float beta0 =
lambda * pow_x0[n] * (2.f - kRho) * pow_x0[n] * pow_n0[n];
const float alpha0 =
lambda * pow_x0[n] * (1.f - kRho) * pow_x0[n] * pow_x0[n];
RTC_DCHECK_LT(alpha0, 0.f);
// The quadratic equation should always have real roots, but to guard
// against numerical errors we limit it to a minimum of zero.
sols[n] = std::max(
0.f, (-beta0 - std::sqrt(std::max(
0.f, beta0 * beta0 - 4.f * alpha0 * gamma0))) /
(2.f * alpha0));
}
}
}
bool IntelligibilityEnhancer::IsSpeech(const float* audio) {
FloatToS16(audio, chunk_length_, audio_s16_.data());
vad_.ProcessChunk(audio_s16_.data(), chunk_length_, sample_rate_hz_);
if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) {
chunks_since_voice_ = 0;
} else if (chunks_since_voice_ < kSpeechOffsetDelay) {
++chunks_since_voice_;
}
return chunks_since_voice_ < kSpeechOffsetDelay;
}
void IntelligibilityEnhancer::DelayHighBands(AudioBuffer* audio) {
RTC_DCHECK_EQ(audio->num_bands(), high_bands_buffers_.size() + 1);
for (size_t i = 0u; i < high_bands_buffers_.size(); ++i) {
Band band = static_cast<Band>(i + 1);
high_bands_buffers_[i]->Delay(audio->split_channels_f(band), chunk_length_);
}
}
} // namespace webrtc