webrtc_m130/video/frame_encode_metadata_writer_unittest.cc
Ilya Nikolaevskiy 4fb12b0cae Reland "Copy video frames metadata between encoded and plain frames in one place"
Reland with fixes.

Currently some video frames metadata like rotation or ntp timestamps are
copied in every encoder and decoder separately. This CL makes copying to
happen at a single place for send or receive side. This will make it
easier to add new metadata in the future.

Also, added some missing tests.

Original Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/133346

Bug: webrtc:10460
Change-Id: Ia71198685de7fbd990704b575231cdce94dc0645
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/134961
Reviewed-by: Johannes Kron <kron@webrtc.org>
Reviewed-by: Niels Moller <nisse@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Commit-Queue: Ilya Nikolaevskiy <ilnik@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#27828}
2019-05-02 13:29:14 +00:00

439 lines
16 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/frame_encode_metadata_writer.h"
#include <cstddef>
#include <vector>
#include "api/video/i420_buffer.h"
#include "api/video/video_frame.h"
#include "api/video/video_timing.h"
#include "common_video/test/utilities.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
const rtc::scoped_refptr<I420Buffer> kFrameBuffer = I420Buffer::Create(4, 4);
inline size_t FrameSize(const size_t& min_frame_size,
const size_t& max_frame_size,
const int& s,
const int& i) {
return min_frame_size + (s + 1) * i % (max_frame_size - min_frame_size);
}
class FakeEncodedImageCallback : public EncodedImageCallback {
public:
FakeEncodedImageCallback() : num_frames_dropped_(0) {}
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
return Result(Result::OK);
}
void OnDroppedFrame(DropReason reason) override { ++num_frames_dropped_; }
size_t GetNumFramesDropped() { return num_frames_dropped_; }
private:
size_t num_frames_dropped_;
};
enum class FrameType {
kNormal,
kTiming,
kDropped,
};
bool IsTimingFrame(const EncodedImage& image) {
return image.timing_.flags != VideoSendTiming::kInvalid &&
image.timing_.flags != VideoSendTiming::kNotTriggered;
}
// Emulates |num_frames| on |num_streams| frames with capture timestamps
// increased by 1 from 0. Size of each frame is between
// |min_frame_size| and |max_frame_size|, outliers are counted relatevely to
// |average_frame_sizes[]| for each stream.
std::vector<std::vector<FrameType>> GetTimingFrames(
const int64_t delay_ms,
const size_t min_frame_size,
const size_t max_frame_size,
std::vector<size_t> average_frame_sizes,
const int num_streams,
const int num_frames) {
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec_settings;
codec_settings.numberOfSimulcastStreams = num_streams;
codec_settings.timing_frame_thresholds = {delay_ms,
kDefaultOutlierFrameSizePercent};
encode_timer.OnEncoderInit(codec_settings, false);
const size_t kFramerate = 30;
VideoBitrateAllocation bitrate_allocation;
for (int si = 0; si < num_streams; ++si) {
bitrate_allocation.SetBitrate(si, 0,
average_frame_sizes[si] * 8 * kFramerate);
}
encode_timer.OnSetRates(bitrate_allocation, kFramerate);
std::vector<std::vector<FrameType>> result(num_streams);
int64_t current_timestamp = 0;
for (int i = 0; i < num_frames; ++i) {
current_timestamp += 1;
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_rtp(current_timestamp * 90)
.set_timestamp_ms(current_timestamp)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
for (int si = 0; si < num_streams; ++si) {
// every (5+s)-th frame is dropped on s-th stream by design.
bool dropped = i % (5 + si) == 0;
EncodedImage image;
image.Allocate(max_frame_size);
image.set_size(FrameSize(min_frame_size, max_frame_size, si, i));
image.capture_time_ms_ = current_timestamp;
image.SetTimestamp(static_cast<uint32_t>(current_timestamp * 90));
image.SetSpatialIndex(si);
if (dropped) {
result[si].push_back(FrameType::kDropped);
continue;
}
encode_timer.FillTimingInfo(si, &image);
if (IsTimingFrame(image)) {
result[si].push_back(FrameType::kTiming);
} else {
result[si].push_back(FrameType::kNormal);
}
}
}
return result;
}
} // namespace
TEST(FrameEncodeTimerTest, MarksTimingFramesPeriodicallyTogether) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 10;
const size_t kMaxFrameSize = 20;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// No outliers as 1000 is larger than anything from range [10,20].
const std::vector<size_t> kAverageSize = {1000, 1000, 1000};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// Timing frames should be tirggered every delayMs.
// As no outliers are expected, frames on all streams have to be
// marked together.
int last_timing_frame = -1;
for (int i = 0; i < kNumFrames; ++i) {
int num_normal = 0;
int num_timing = 0;
int num_dropped = 0;
for (int s = 0; s < kNumStreams; ++s) {
if (frames[s][i] == FrameType::kTiming) {
++num_timing;
} else if (frames[s][i] == FrameType::kNormal) {
++num_normal;
} else {
++num_dropped;
}
}
// Can't have both normal and timing frames at the same timstamp.
EXPECT_TRUE(num_timing == 0 || num_normal == 0);
if (num_dropped < kNumStreams) {
if (last_timing_frame == -1 || i >= last_timing_frame + kDelayMs) {
// If didn't have timing frames for a period, current sent frame has to
// be one. No normal frames should be sent.
EXPECT_EQ(num_normal, 0);
} else {
// No unneeded timing frames should be sent.
EXPECT_EQ(num_timing, 0);
}
}
if (num_timing > 0)
last_timing_frame = i;
}
}
TEST(FrameEncodeTimerTest, MarksOutliers) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 2495;
const size_t kMaxFrameSize = 2505;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// Possible outliers as 1000 lies in range [995, 1005].
const std::vector<size_t> kAverageSize = {998, 1000, 1004};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// All outliers should be marked.
for (int i = 0; i < kNumFrames; ++i) {
for (int s = 0; s < kNumStreams; ++s) {
if (FrameSize(kMinFrameSize, kMaxFrameSize, s, i) >=
kAverageSize[s] * kDefaultOutlierFrameSizePercent / 100) {
// Too big frame. May be dropped or timing, but not normal.
EXPECT_NE(frames[s][i], FrameType::kNormal);
}
}
}
}
TEST(FrameEncodeTimerTest, NoTimingFrameIfNoEncodeStartTime) {
int64_t timestamp = 1;
constexpr size_t kFrameSize = 500;
EncodedImage image;
image.Allocate(kFrameSize);
image.set_size(kFrameSize);
image.capture_time_ms_ = timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec_settings;
// Make all frames timing frames.
codec_settings.timing_frame_thresholds.delay_ms = 1;
encode_timer.OnEncoderInit(codec_settings, false);
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
// Verify a single frame works with encode start time set.
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(timestamp)
.set_timestamp_rtp(timestamp * 90)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_TRUE(IsTimingFrame(image));
// New frame, now skip OnEncodeStarted. Should not result in timing frame.
image.capture_time_ms_ = ++timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
image.timing_ = EncodedImage::Timing();
encode_timer.FillTimingInfo(0, &image);
EXPECT_FALSE(IsTimingFrame(image));
}
TEST(FrameEncodeTimerTest, AdjustsCaptureTimeForInternalSourceEncoder) {
const int64_t kEncodeStartDelayMs = 2;
const int64_t kEncodeFinishDelayMs = 10;
constexpr size_t kFrameSize = 500;
int64_t timestamp = 1;
EncodedImage image;
image.Allocate(kFrameSize);
image.set_size(kFrameSize);
image.capture_time_ms_ = timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec_settings;
// Make all frames timing frames.
codec_settings.timing_frame_thresholds.delay_ms = 1;
encode_timer.OnEncoderInit(codec_settings, true);
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
// Verify a single frame without encode timestamps isn't a timing frame.
encode_timer.FillTimingInfo(0, &image);
EXPECT_FALSE(IsTimingFrame(image));
// New frame, but this time with encode timestamps set in timing_.
// This should be a timing frame.
image.capture_time_ms_ = ++timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
image.timing_ = EncodedImage::Timing();
image.timing_.encode_start_ms = timestamp + kEncodeStartDelayMs;
image.timing_.encode_finish_ms = timestamp + kEncodeFinishDelayMs;
encode_timer.FillTimingInfo(0, &image);
EXPECT_TRUE(IsTimingFrame(image));
// Frame is captured kEncodeFinishDelayMs before it's encoded, so restored
// capture timestamp should be kEncodeFinishDelayMs in the past.
EXPECT_NEAR(image.capture_time_ms_, rtc::TimeMillis() - kEncodeFinishDelayMs,
1);
}
TEST(FrameEncodeTimerTest, NotifiesAboutDroppedFrames) {
const int64_t kTimestampMs1 = 47721840;
const int64_t kTimestampMs2 = 47721850;
const int64_t kTimestampMs3 = 47721860;
const int64_t kTimestampMs4 = 47721870;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
EncodedImage image;
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_rtp(kTimestampMs1 * 90)
.set_timestamp_ms(kTimestampMs1)
.set_video_frame_buffer(kFrameBuffer)
.build();
image.capture_time_ms_ = kTimestampMs1;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
EXPECT_EQ(0u, sink.GetNumFramesDropped());
encode_timer.FillTimingInfo(0, &image);
image.capture_time_ms_ = kTimestampMs2;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
image.timing_ = EncodedImage::Timing();
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
// No OnEncodedImageCall for timestamp2. Yet, at this moment it's not known
// that frame with timestamp2 was dropped.
EXPECT_EQ(0u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs3;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
image.timing_ = EncodedImage::Timing();
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs4;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
image.timing_ = EncodedImage::Timing();
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
}
TEST(FrameEncodeTimerTest, RestoresCaptureTimestamps) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
image.capture_time_ms_ = kTimestampMs; // Correct timestamp.
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(image.capture_time_ms_)
.set_timestamp_rtp(image.capture_time_ms_ * 90)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
image.capture_time_ms_ = 0; // Incorrect timestamp.
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(kTimestampMs, image.capture_time_ms_);
}
TEST(FrameEncodeTimerTest, CopiesRotation) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
image.SetTimestamp(static_cast<uint32_t>(kTimestampMs * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(kTimestampMs)
.set_timestamp_rtp(kTimestampMs * 90)
.set_rotation(kVideoRotation_180)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(kVideoRotation_180, image.rotation_);
}
TEST(FrameEncodeTimerTest, SetsContentType) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec;
codec.mode = VideoCodecMode::kScreensharing;
encode_timer.OnEncoderInit(codec, false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
image.SetTimestamp(static_cast<uint32_t>(kTimestampMs * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(kTimestampMs)
.set_timestamp_rtp(kTimestampMs * 90)
.set_rotation(kVideoRotation_180)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(VideoContentType::SCREENSHARE, image.content_type_);
}
TEST(FrameEncodeTimerTest, CopiesColorSpace) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
webrtc::ColorSpace color_space =
CreateTestColorSpace(/*with_hdr_metadata=*/true);
image.SetTimestamp(static_cast<uint32_t>(kTimestampMs * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(kTimestampMs)
.set_timestamp_rtp(kTimestampMs * 90)
.set_color_space(color_space)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
ASSERT_NE(image.ColorSpace(), nullptr);
EXPECT_EQ(color_space, *image.ColorSpace());
}
} // namespace test
} // namespace webrtc