Bug: webrtc:11547 Change-Id: Iea2d706228b5a533eb7fae84613462165d7c9b54 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/298300 Auto-Submit: Tomas Gunnarsson <tommi@webrtc.org> Reviewed-by: Danil Chapovalov <danilchap@webrtc.org> Commit-Queue: Tomas Gunnarsson <tommi@webrtc.org> Cr-Commit-Position: refs/heads/main@{#39618}
786 lines
25 KiB
C++
786 lines
25 KiB
C++
/*
|
|
* Copyright 2020 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "pc/sctp_data_channel.h"
|
|
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "absl/cleanup/cleanup.h"
|
|
#include "media/sctp/sctp_transport_internal.h"
|
|
#include "pc/proxy.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/system/unused.h"
|
|
#include "rtc_base/thread.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
static size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024;
|
|
|
|
static std::atomic<int> g_unique_id{0};
|
|
|
|
int GenerateUniqueId() {
|
|
return ++g_unique_id;
|
|
}
|
|
|
|
// Define proxy for DataChannelInterface.
|
|
BEGIN_PRIMARY_PROXY_MAP(DataChannel)
|
|
PROXY_PRIMARY_THREAD_DESTRUCTOR()
|
|
PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*)
|
|
PROXY_METHOD0(void, UnregisterObserver)
|
|
BYPASS_PROXY_CONSTMETHOD0(std::string, label)
|
|
BYPASS_PROXY_CONSTMETHOD0(bool, reliable)
|
|
BYPASS_PROXY_CONSTMETHOD0(bool, ordered)
|
|
BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmitTime)
|
|
BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmits)
|
|
BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxRetransmitsOpt)
|
|
BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxPacketLifeTime)
|
|
BYPASS_PROXY_CONSTMETHOD0(std::string, protocol)
|
|
BYPASS_PROXY_CONSTMETHOD0(bool, negotiated)
|
|
// Can't bypass the proxy since the id may change.
|
|
PROXY_CONSTMETHOD0(int, id)
|
|
BYPASS_PROXY_CONSTMETHOD0(Priority, priority)
|
|
PROXY_CONSTMETHOD0(DataState, state)
|
|
PROXY_CONSTMETHOD0(RTCError, error)
|
|
PROXY_CONSTMETHOD0(uint32_t, messages_sent)
|
|
PROXY_CONSTMETHOD0(uint64_t, bytes_sent)
|
|
PROXY_CONSTMETHOD0(uint32_t, messages_received)
|
|
PROXY_CONSTMETHOD0(uint64_t, bytes_received)
|
|
PROXY_CONSTMETHOD0(uint64_t, buffered_amount)
|
|
PROXY_METHOD0(void, Close)
|
|
// TODO(bugs.webrtc.org/11547): Change to run on the network thread.
|
|
PROXY_METHOD1(bool, Send, const DataBuffer&)
|
|
END_PROXY_MAP(DataChannel)
|
|
|
|
} // namespace
|
|
|
|
InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base)
|
|
: DataChannelInit(base), open_handshake_role(kOpener) {
|
|
// If the channel is externally negotiated, do not send the OPEN message.
|
|
if (base.negotiated) {
|
|
open_handshake_role = kNone;
|
|
} else {
|
|
// Datachannel is externally negotiated. Ignore the id value.
|
|
// Specified in createDataChannel, WebRTC spec section 6.1 bullet 13.
|
|
id = -1;
|
|
}
|
|
// Backwards compatibility: If maxRetransmits or maxRetransmitTime
|
|
// are negative, the feature is not enabled.
|
|
// Values are clamped to a 16bit range.
|
|
if (maxRetransmits) {
|
|
if (*maxRetransmits < 0) {
|
|
RTC_LOG(LS_ERROR)
|
|
<< "Accepting maxRetransmits < 0 for backwards compatibility";
|
|
maxRetransmits = absl::nullopt;
|
|
} else if (*maxRetransmits > std::numeric_limits<uint16_t>::max()) {
|
|
maxRetransmits = std::numeric_limits<uint16_t>::max();
|
|
}
|
|
}
|
|
|
|
if (maxRetransmitTime) {
|
|
if (*maxRetransmitTime < 0) {
|
|
RTC_LOG(LS_ERROR)
|
|
<< "Accepting maxRetransmitTime < 0 for backwards compatibility";
|
|
maxRetransmitTime = absl::nullopt;
|
|
} else if (*maxRetransmitTime > std::numeric_limits<uint16_t>::max()) {
|
|
maxRetransmitTime = std::numeric_limits<uint16_t>::max();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool InternalDataChannelInit::IsValid() const {
|
|
if (id < -1)
|
|
return false;
|
|
|
|
if (maxRetransmits.has_value() && maxRetransmits.value() < 0)
|
|
return false;
|
|
|
|
if (maxRetransmitTime.has_value() && maxRetransmitTime.value() < 0)
|
|
return false;
|
|
|
|
// Only one of these can be set.
|
|
if (maxRetransmits.has_value() && maxRetransmitTime.has_value())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SctpSidAllocator::AllocateSid(rtc::SSLRole role, StreamId* sid) {
|
|
int potential_sid = (role == rtc::SSL_CLIENT) ? 0 : 1;
|
|
while (potential_sid <= static_cast<int>(cricket::kMaxSctpSid)) {
|
|
*sid = StreamId(potential_sid);
|
|
if (used_sids_.insert(*sid).second)
|
|
return true;
|
|
potential_sid += 2;
|
|
}
|
|
sid->reset();
|
|
return false;
|
|
}
|
|
|
|
bool SctpSidAllocator::ReserveSid(const StreamId& sid) {
|
|
if (!sid.HasValue() || sid.stream_id_int() > cricket::kMaxSctpSid)
|
|
return false;
|
|
return used_sids_.insert(sid).second;
|
|
}
|
|
|
|
void SctpSidAllocator::ReleaseSid(const StreamId& sid) {
|
|
used_sids_.erase(sid);
|
|
}
|
|
|
|
// static
|
|
rtc::scoped_refptr<SctpDataChannel> SctpDataChannel::Create(
|
|
rtc::WeakPtr<SctpDataChannelControllerInterface> controller,
|
|
const std::string& label,
|
|
bool connected_to_transport,
|
|
const InternalDataChannelInit& config,
|
|
rtc::Thread* signaling_thread,
|
|
rtc::Thread* network_thread) {
|
|
RTC_DCHECK(controller);
|
|
|
|
if (!config.IsValid()) {
|
|
RTC_LOG(LS_ERROR) << "Failed to initialize the SCTP data channel due to "
|
|
"invalid DataChannelInit.";
|
|
return nullptr;
|
|
}
|
|
|
|
auto channel = rtc::make_ref_counted<SctpDataChannel>(
|
|
config, std::move(controller), label, connected_to_transport,
|
|
signaling_thread, network_thread);
|
|
channel->Init();
|
|
return channel;
|
|
}
|
|
|
|
// static
|
|
rtc::scoped_refptr<DataChannelInterface> SctpDataChannel::CreateProxy(
|
|
rtc::scoped_refptr<SctpDataChannel> channel) {
|
|
// TODO(bugs.webrtc.org/11547): incorporate the network thread in the proxy.
|
|
auto* signaling_thread = channel->signaling_thread_;
|
|
return DataChannelProxy::Create(signaling_thread, std::move(channel));
|
|
}
|
|
|
|
SctpDataChannel::SctpDataChannel(
|
|
const InternalDataChannelInit& config,
|
|
rtc::WeakPtr<SctpDataChannelControllerInterface> controller,
|
|
const std::string& label,
|
|
bool connected_to_transport,
|
|
rtc::Thread* signaling_thread,
|
|
rtc::Thread* network_thread)
|
|
: signaling_thread_(signaling_thread),
|
|
network_thread_(network_thread),
|
|
id_(config.id),
|
|
internal_id_(GenerateUniqueId()),
|
|
label_(label),
|
|
protocol_(config.protocol),
|
|
max_retransmit_time_(config.maxRetransmitTime),
|
|
max_retransmits_(config.maxRetransmits),
|
|
priority_(config.priority),
|
|
negotiated_(config.negotiated),
|
|
ordered_(config.ordered),
|
|
observer_(nullptr),
|
|
controller_(std::move(controller)),
|
|
connected_to_transport_(connected_to_transport) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
RTC_UNUSED(network_thread_);
|
|
RTC_DCHECK(config.IsValid());
|
|
RTC_DCHECK(controller_);
|
|
|
|
switch (config.open_handshake_role) {
|
|
case InternalDataChannelInit::kNone: // pre-negotiated
|
|
handshake_state_ = kHandshakeReady;
|
|
break;
|
|
case InternalDataChannelInit::kOpener:
|
|
handshake_state_ = kHandshakeShouldSendOpen;
|
|
break;
|
|
case InternalDataChannelInit::kAcker:
|
|
handshake_state_ = kHandshakeShouldSendAck;
|
|
break;
|
|
}
|
|
|
|
// Try to connect to the transport in case the transport channel already
|
|
// exists.
|
|
if (id_.HasValue()) {
|
|
controller_->AddSctpDataStream(id_);
|
|
}
|
|
}
|
|
|
|
void SctpDataChannel::Init() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
|
|
// Checks if the transport is ready to send because the initial channel
|
|
// ready signal may have been sent before the DataChannel creation.
|
|
// This has to be done async because the upper layer objects (e.g.
|
|
// Chrome glue and WebKit) are not wired up properly until after this
|
|
// function returns.
|
|
if (controller_->ReadyToSendData()) {
|
|
RTC_DCHECK(connected_to_transport_);
|
|
AddRef();
|
|
absl::Cleanup release = [this] { Release(); };
|
|
rtc::Thread::Current()->PostTask([this, release = std::move(release)] {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
if (state_ != kClosed)
|
|
OnTransportReady();
|
|
});
|
|
}
|
|
}
|
|
|
|
SctpDataChannel::~SctpDataChannel() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
}
|
|
|
|
void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
observer_ = observer;
|
|
DeliverQueuedReceivedData();
|
|
}
|
|
|
|
void SctpDataChannel::UnregisterObserver() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
observer_ = nullptr;
|
|
}
|
|
|
|
std::string SctpDataChannel::label() const {
|
|
return label_;
|
|
}
|
|
|
|
bool SctpDataChannel::reliable() const {
|
|
// May be called on any thread.
|
|
return !max_retransmits_ && !max_retransmit_time_;
|
|
}
|
|
|
|
bool SctpDataChannel::ordered() const {
|
|
return ordered_;
|
|
}
|
|
|
|
uint16_t SctpDataChannel::maxRetransmitTime() const {
|
|
return max_retransmit_time_ ? *max_retransmit_time_
|
|
: static_cast<uint16_t>(-1);
|
|
}
|
|
|
|
uint16_t SctpDataChannel::maxRetransmits() const {
|
|
return max_retransmits_ ? *max_retransmits_ : static_cast<uint16_t>(-1);
|
|
}
|
|
|
|
absl::optional<int> SctpDataChannel::maxPacketLifeTime() const {
|
|
return max_retransmit_time_;
|
|
}
|
|
|
|
absl::optional<int> SctpDataChannel::maxRetransmitsOpt() const {
|
|
return max_retransmits_;
|
|
}
|
|
|
|
std::string SctpDataChannel::protocol() const {
|
|
return protocol_;
|
|
}
|
|
|
|
bool SctpDataChannel::negotiated() const {
|
|
return negotiated_;
|
|
}
|
|
|
|
int SctpDataChannel::id() const {
|
|
return id_.stream_id_int();
|
|
}
|
|
|
|
Priority SctpDataChannel::priority() const {
|
|
return priority_ ? *priority_ : Priority::kLow;
|
|
}
|
|
|
|
uint64_t SctpDataChannel::buffered_amount() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
return queued_send_data_.byte_count();
|
|
}
|
|
|
|
void SctpDataChannel::Close() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
if (state_ == kClosing || state_ == kClosed)
|
|
return;
|
|
SetState(kClosing);
|
|
// Will send queued data before beginning the underlying closing procedure.
|
|
UpdateState();
|
|
}
|
|
|
|
SctpDataChannel::DataState SctpDataChannel::state() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
return state_;
|
|
}
|
|
|
|
RTCError SctpDataChannel::error() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
return error_;
|
|
}
|
|
|
|
uint32_t SctpDataChannel::messages_sent() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
return messages_sent_;
|
|
}
|
|
|
|
uint64_t SctpDataChannel::bytes_sent() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
return bytes_sent_;
|
|
}
|
|
|
|
uint32_t SctpDataChannel::messages_received() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
return messages_received_;
|
|
}
|
|
|
|
uint64_t SctpDataChannel::bytes_received() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
return bytes_received_;
|
|
}
|
|
|
|
bool SctpDataChannel::Send(const DataBuffer& buffer) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
// TODO(bugs.webrtc.org/11547): Expect this method to be called on the network
|
|
// thread. Bring buffer management etc to the network thread and keep the
|
|
// operational state management on the signaling thread.
|
|
|
|
if (state_ != kOpen) {
|
|
return false;
|
|
}
|
|
|
|
// If the queue is non-empty, we're waiting for SignalReadyToSend,
|
|
// so just add to the end of the queue and keep waiting.
|
|
if (!queued_send_data_.Empty()) {
|
|
return QueueSendDataMessage(buffer);
|
|
}
|
|
|
|
SendDataMessage(buffer, true);
|
|
|
|
// Always return true for SCTP DataChannel per the spec.
|
|
return true;
|
|
}
|
|
|
|
void SctpDataChannel::SetSctpSid(const StreamId& sid) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
RTC_DCHECK(!id_.HasValue());
|
|
RTC_DCHECK(sid.HasValue());
|
|
RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck);
|
|
RTC_DCHECK_EQ(state_, kConnecting);
|
|
|
|
id_ = sid;
|
|
controller_->AddSctpDataStream(sid);
|
|
}
|
|
|
|
void SctpDataChannel::OnClosingProcedureStartedRemotely() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
if (state_ != kClosing && state_ != kClosed) {
|
|
// Don't bother sending queued data since the side that initiated the
|
|
// closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy
|
|
// discussion about this.
|
|
queued_send_data_.Clear();
|
|
queued_control_data_.Clear();
|
|
// Just need to change state to kClosing, SctpTransport will handle the
|
|
// rest of the closing procedure and OnClosingProcedureComplete will be
|
|
// called later.
|
|
started_closing_procedure_ = true;
|
|
SetState(kClosing);
|
|
}
|
|
}
|
|
|
|
void SctpDataChannel::OnClosingProcedureComplete() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
// If the closing procedure is complete, we should have finished sending
|
|
// all pending data and transitioned to kClosing already.
|
|
RTC_DCHECK_EQ(state_, kClosing);
|
|
RTC_DCHECK(queued_send_data_.Empty());
|
|
SetState(kClosed);
|
|
}
|
|
|
|
void SctpDataChannel::OnTransportChannelCreated() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
RTC_DCHECK(controller_);
|
|
|
|
connected_to_transport_ = true;
|
|
|
|
// The sid may have been unassigned when controller_->ConnectDataChannel was
|
|
// done. So always add the streams even if connected_to_transport_ is true.
|
|
if (id_.HasValue()) {
|
|
controller_->AddSctpDataStream(id_);
|
|
}
|
|
}
|
|
|
|
void SctpDataChannel::OnTransportChannelClosed(RTCError error) {
|
|
// The SctpTransport is unusable, which could come from multiple reasons:
|
|
// - the SCTP m= section was rejected
|
|
// - the DTLS transport is closed
|
|
// - the SCTP transport is closed
|
|
CloseAbruptlyWithError(std::move(error));
|
|
}
|
|
|
|
DataChannelStats SctpDataChannel::GetStats() const {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
DataChannelStats stats{internal_id_, id(), label(),
|
|
protocol(), state(), messages_sent(),
|
|
messages_received(), bytes_sent(), bytes_received()};
|
|
return stats;
|
|
}
|
|
|
|
void SctpDataChannel::OnDataReceived(DataMessageType type,
|
|
const rtc::CopyOnWriteBuffer& payload) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
|
|
if (type == DataMessageType::kControl) {
|
|
if (handshake_state_ != kHandshakeWaitingForAck) {
|
|
// Ignore it if we are not expecting an ACK message.
|
|
RTC_LOG(LS_WARNING)
|
|
<< "DataChannel received unexpected CONTROL message, sid = "
|
|
<< id_.stream_id_int();
|
|
return;
|
|
}
|
|
if (ParseDataChannelOpenAckMessage(payload)) {
|
|
// We can send unordered as soon as we receive the ACK message.
|
|
handshake_state_ = kHandshakeReady;
|
|
RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = "
|
|
<< id_.stream_id_int();
|
|
} else {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "DataChannel failed to parse OPEN_ACK message, sid = "
|
|
<< id_.stream_id_int();
|
|
}
|
|
return;
|
|
}
|
|
|
|
RTC_DCHECK(type == DataMessageType::kBinary ||
|
|
type == DataMessageType::kText);
|
|
|
|
RTC_DLOG(LS_VERBOSE) << "DataChannel received DATA message, sid = "
|
|
<< id_.stream_id_int();
|
|
// We can send unordered as soon as we receive any DATA message since the
|
|
// remote side must have received the OPEN (and old clients do not send
|
|
// OPEN_ACK).
|
|
if (handshake_state_ == kHandshakeWaitingForAck) {
|
|
handshake_state_ = kHandshakeReady;
|
|
}
|
|
|
|
bool binary = (type == DataMessageType::kBinary);
|
|
auto buffer = std::make_unique<DataBuffer>(payload, binary);
|
|
if (state_ == kOpen && observer_) {
|
|
++messages_received_;
|
|
bytes_received_ += buffer->size();
|
|
observer_->OnMessage(*buffer.get());
|
|
} else {
|
|
if (queued_received_data_.byte_count() + payload.size() >
|
|
kMaxQueuedReceivedDataBytes) {
|
|
RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size.";
|
|
|
|
queued_received_data_.Clear();
|
|
CloseAbruptlyWithError(
|
|
RTCError(RTCErrorType::RESOURCE_EXHAUSTED,
|
|
"Queued received data exceeds the max buffer size."));
|
|
|
|
return;
|
|
}
|
|
queued_received_data_.PushBack(std::move(buffer));
|
|
}
|
|
}
|
|
|
|
void SctpDataChannel::OnTransportReady() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
|
|
// TODO(tommi, hta): We don't need the `writable_` flag for SCTP datachannels.
|
|
// Remove it and just rely on `connected_to_transport_` instead.
|
|
// In practice the transport is configured inside
|
|
// `PeerConnection::SetupDataChannelTransport_n`, which results in
|
|
// `SctpDataChannel` getting the OnTransportChannelCreated callback, and then
|
|
// that's immediately followed by calling `transport->SetDataSink` which is
|
|
// what triggers the callback to `OnTransportReady()`.
|
|
// These steps are currently accomplished via two separate PostTask calls to
|
|
// the signaling thread, but could simply be done in single method call on
|
|
// the network thread (which incidentally is the thread that we'll need to
|
|
// be on for the below `Send*` calls, which currently do a BlockingCall
|
|
// from the signaling thread to the network thread.
|
|
RTC_DCHECK(connected_to_transport_);
|
|
writable_ = true;
|
|
|
|
SendQueuedControlMessages();
|
|
SendQueuedDataMessages();
|
|
|
|
UpdateState();
|
|
}
|
|
|
|
void SctpDataChannel::CloseAbruptlyWithError(RTCError error) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
|
|
if (state_ == kClosed) {
|
|
return;
|
|
}
|
|
|
|
connected_to_transport_ = false;
|
|
|
|
// Closing abruptly means any queued data gets thrown away.
|
|
queued_send_data_.Clear();
|
|
queued_control_data_.Clear();
|
|
|
|
// Still go to "kClosing" before "kClosed", since observers may be expecting
|
|
// that.
|
|
SetState(kClosing);
|
|
error_ = std::move(error);
|
|
SetState(kClosed);
|
|
}
|
|
|
|
void SctpDataChannel::CloseAbruptlyWithDataChannelFailure(
|
|
const std::string& message) {
|
|
RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message);
|
|
error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE);
|
|
CloseAbruptlyWithError(std::move(error));
|
|
}
|
|
|
|
void SctpDataChannel::UpdateState() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
// UpdateState determines what to do from a few state variables. Include
|
|
// all conditions required for each state transition here for
|
|
// clarity. OnTransportReady(true) will send any queued data and then invoke
|
|
// UpdateState().
|
|
|
|
switch (state_) {
|
|
case kConnecting: {
|
|
if (connected_to_transport_) {
|
|
if (handshake_state_ == kHandshakeShouldSendOpen) {
|
|
rtc::CopyOnWriteBuffer payload;
|
|
WriteDataChannelOpenMessage(label_, protocol_, priority_, ordered_,
|
|
max_retransmits_, max_retransmit_time_,
|
|
&payload);
|
|
SendControlMessage(payload);
|
|
} else if (handshake_state_ == kHandshakeShouldSendAck) {
|
|
rtc::CopyOnWriteBuffer payload;
|
|
WriteDataChannelOpenAckMessage(&payload);
|
|
SendControlMessage(payload);
|
|
}
|
|
if (writable_ && (handshake_state_ == kHandshakeReady ||
|
|
handshake_state_ == kHandshakeWaitingForAck)) {
|
|
SetState(kOpen);
|
|
// If we have received buffers before the channel got writable.
|
|
// Deliver them now.
|
|
DeliverQueuedReceivedData();
|
|
}
|
|
} else {
|
|
RTC_DCHECK(!id_.HasValue());
|
|
}
|
|
break;
|
|
}
|
|
case kOpen: {
|
|
break;
|
|
}
|
|
case kClosing: {
|
|
if (connected_to_transport_) {
|
|
// Wait for all queued data to be sent before beginning the closing
|
|
// procedure.
|
|
if (queued_send_data_.Empty() && queued_control_data_.Empty()) {
|
|
// For SCTP data channels, we need to wait for the closing procedure
|
|
// to complete; after calling RemoveSctpDataStream,
|
|
// OnClosingProcedureComplete will end up called asynchronously
|
|
// afterwards.
|
|
if (!started_closing_procedure_ && controller_ && id_.HasValue()) {
|
|
started_closing_procedure_ = true;
|
|
controller_->RemoveSctpDataStream(id_);
|
|
}
|
|
}
|
|
} else {
|
|
// When we're not connected to a transport, we'll transition
|
|
// directly to the `kClosed` state from here.
|
|
queued_send_data_.Clear();
|
|
queued_control_data_.Clear();
|
|
SetState(kClosed);
|
|
}
|
|
break;
|
|
}
|
|
case kClosed:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SctpDataChannel::SetState(DataState state) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
if (state_ == state) {
|
|
return;
|
|
}
|
|
|
|
state_ = state;
|
|
if (observer_) {
|
|
observer_->OnStateChange();
|
|
}
|
|
|
|
if (controller_)
|
|
controller_->OnChannelStateChanged(this, state_);
|
|
}
|
|
|
|
void SctpDataChannel::DeliverQueuedReceivedData() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
if (!observer_) {
|
|
return;
|
|
}
|
|
|
|
while (!queued_received_data_.Empty()) {
|
|
std::unique_ptr<DataBuffer> buffer = queued_received_data_.PopFront();
|
|
++messages_received_;
|
|
bytes_received_ += buffer->size();
|
|
observer_->OnMessage(*buffer);
|
|
}
|
|
}
|
|
|
|
void SctpDataChannel::SendQueuedDataMessages() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
if (queued_send_data_.Empty()) {
|
|
return;
|
|
}
|
|
|
|
RTC_DCHECK(state_ == kOpen || state_ == kClosing);
|
|
|
|
while (!queued_send_data_.Empty()) {
|
|
std::unique_ptr<DataBuffer> buffer = queued_send_data_.PopFront();
|
|
if (!SendDataMessage(*buffer, false)) {
|
|
// Return the message to the front of the queue if sending is aborted.
|
|
queued_send_data_.PushFront(std::move(buffer));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SctpDataChannel::SendDataMessage(const DataBuffer& buffer,
|
|
bool queue_if_blocked) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
SendDataParams send_params;
|
|
if (!controller_) {
|
|
return false;
|
|
}
|
|
|
|
send_params.ordered = ordered_;
|
|
// Send as ordered if it is still going through OPEN/ACK signaling.
|
|
if (handshake_state_ != kHandshakeReady && !ordered_) {
|
|
send_params.ordered = true;
|
|
RTC_DLOG(LS_VERBOSE)
|
|
<< "Sending data as ordered for unordered DataChannel "
|
|
"because the OPEN_ACK message has not been received.";
|
|
}
|
|
|
|
send_params.max_rtx_count = max_retransmits_;
|
|
send_params.max_rtx_ms = max_retransmit_time_;
|
|
send_params.type =
|
|
buffer.binary ? DataMessageType::kBinary : DataMessageType::kText;
|
|
|
|
cricket::SendDataResult send_result = cricket::SDR_SUCCESS;
|
|
bool success =
|
|
controller_->SendData(id_, send_params, buffer.data, &send_result);
|
|
|
|
if (success) {
|
|
++messages_sent_;
|
|
bytes_sent_ += buffer.size();
|
|
|
|
if (observer_ && buffer.size() > 0) {
|
|
observer_->OnBufferedAmountChange(buffer.size());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (send_result == cricket::SDR_BLOCK) {
|
|
if (!queue_if_blocked || QueueSendDataMessage(buffer)) {
|
|
return false;
|
|
}
|
|
}
|
|
// Close the channel if the error is not SDR_BLOCK, or if queuing the
|
|
// message failed.
|
|
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, "
|
|
"send_result = "
|
|
<< send_result;
|
|
CloseAbruptlyWithError(
|
|
RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data"));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SctpDataChannel::QueueSendDataMessage(const DataBuffer& buffer) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
size_t start_buffered_amount = queued_send_data_.byte_count();
|
|
if (start_buffered_amount + buffer.size() >
|
|
DataChannelInterface::MaxSendQueueSize()) {
|
|
RTC_LOG(LS_ERROR) << "Can't buffer any more data for the data channel.";
|
|
return false;
|
|
}
|
|
queued_send_data_.PushBack(std::make_unique<DataBuffer>(buffer));
|
|
return true;
|
|
}
|
|
|
|
void SctpDataChannel::SendQueuedControlMessages() {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
PacketQueue control_packets;
|
|
control_packets.Swap(&queued_control_data_);
|
|
|
|
while (!control_packets.Empty()) {
|
|
std::unique_ptr<DataBuffer> buf = control_packets.PopFront();
|
|
SendControlMessage(buf->data);
|
|
}
|
|
}
|
|
|
|
void SctpDataChannel::QueueControlMessage(
|
|
const rtc::CopyOnWriteBuffer& buffer) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
queued_control_data_.PushBack(std::make_unique<DataBuffer>(buffer, true));
|
|
}
|
|
|
|
bool SctpDataChannel::SendControlMessage(const rtc::CopyOnWriteBuffer& buffer) {
|
|
RTC_DCHECK_RUN_ON(signaling_thread_);
|
|
RTC_DCHECK(writable_);
|
|
RTC_DCHECK(connected_to_transport_);
|
|
RTC_DCHECK(id_.HasValue());
|
|
|
|
if (!controller_) {
|
|
return false;
|
|
}
|
|
bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen;
|
|
RTC_DCHECK(!is_open_message || !negotiated_);
|
|
|
|
SendDataParams send_params;
|
|
// Send data as ordered before we receive any message from the remote peer to
|
|
// make sure the remote peer will not receive any data before it receives the
|
|
// OPEN message.
|
|
send_params.ordered = ordered_ || is_open_message;
|
|
send_params.type = DataMessageType::kControl;
|
|
|
|
cricket::SendDataResult send_result = cricket::SDR_SUCCESS;
|
|
bool retval = controller_->SendData(id_, send_params, buffer, &send_result);
|
|
if (retval) {
|
|
RTC_DLOG(LS_VERBOSE) << "Sent CONTROL message on channel "
|
|
<< id_.stream_id_int();
|
|
|
|
if (handshake_state_ == kHandshakeShouldSendAck) {
|
|
handshake_state_ = kHandshakeReady;
|
|
} else if (handshake_state_ == kHandshakeShouldSendOpen) {
|
|
handshake_state_ = kHandshakeWaitingForAck;
|
|
}
|
|
} else if (send_result == cricket::SDR_BLOCK) {
|
|
QueueControlMessage(buffer);
|
|
} else {
|
|
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send"
|
|
" the CONTROL message, send_result = "
|
|
<< send_result;
|
|
CloseAbruptlyWithError(RTCError(RTCErrorType::NETWORK_ERROR,
|
|
"Failed to send a CONTROL message"));
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// static
|
|
void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) {
|
|
g_unique_id = new_value;
|
|
}
|
|
|
|
SctpDataChannel* DowncastProxiedDataChannelInterfaceToSctpDataChannelForTesting(
|
|
DataChannelInterface* channel) {
|
|
return static_cast<SctpDataChannel*>(
|
|
static_cast<DataChannelProxy*>(channel)->internal());
|
|
}
|
|
|
|
} // namespace webrtc
|